Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,15 @@
|
|
1 |
-
import os
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import gradio as gr
|
6 |
import json
|
7 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
-
import spaces
|
9 |
-
|
10 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
11 |
-
os.environ['TORCH_USE_CUDA_DSA'] = "1"
|
12 |
|
13 |
# Ensure you have GPU support
|
14 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
|
16 |
# Load the CSV file with embeddings
|
17 |
-
df = pd.read_csv('
|
18 |
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list
|
19 |
|
20 |
# Convert embeddings to tensor for efficient retrieval
|
@@ -23,52 +18,33 @@ embeddings = torch.tensor(df['embedding'].tolist(), device=device)
|
|
23 |
# Load the Sentence Transformer model
|
24 |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
|
25 |
|
26 |
-
# Load the
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# Load the NLU model for intent detection
|
31 |
-
nlu_model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
32 |
|
33 |
# Define the function to find the most relevant document
|
34 |
-
@spaces.GPU(duration=120)
|
35 |
def retrieve_relevant_doc(query):
|
36 |
query_embedding = model.encode(query, convert_to_tensor=True, device=device)
|
37 |
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
38 |
best_match_idx = torch.argmax(similarities).item()
|
39 |
return df.iloc[best_match_idx]['Abstract']
|
40 |
|
41 |
-
# Define the function to detect intent
|
42 |
-
def detect_intent(query):
|
43 |
-
inputs = tokenizer(query, return_tensors="pt").to(device)
|
44 |
-
outputs = nlu_model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
45 |
-
intent = torch.argmax(outputs.logits).item()
|
46 |
-
return intent
|
47 |
-
|
48 |
# Define the function to generate a response
|
49 |
-
@spaces.GPU(duration=120)
|
50 |
def generate_response(query):
|
51 |
relevant_doc = retrieve_relevant_doc(query)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
outputs = model_response.generate(inputs["input_ids"], max_length=150)
|
57 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
58 |
-
elif intent == 1: # Handle intent 1 (e.g., opinion-based query)
|
59 |
-
# Generate a response based on the detected intent
|
60 |
-
response = "I'm not sure I understand your question. Can you please rephrase?"
|
61 |
-
else:
|
62 |
-
response = "I'm not sure I understand your question. Can you please rephrase?"
|
63 |
return response
|
64 |
|
65 |
# Create a Gradio interface
|
66 |
iface = gr.Interface(
|
67 |
fn=generate_response,
|
68 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
69 |
outputs="text",
|
70 |
title="RAG Chatbot",
|
71 |
-
description="This chatbot retrieves relevant documents based on your query and generates responses using
|
72 |
)
|
73 |
|
74 |
# Launch the Gradio interface
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
import gradio as gr
|
5 |
import json
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Ensure you have GPU support
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
|
11 |
# Load the CSV file with embeddings
|
12 |
+
df = pd.read_csv('updated_dataset_with_embeddings.csv')
|
13 |
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list
|
14 |
|
15 |
# Convert embeddings to tensor for efficient retrieval
|
|
|
18 |
# Load the Sentence Transformer model
|
19 |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
|
20 |
|
21 |
+
# Load the LLaMA model for response generation
|
22 |
+
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
23 |
+
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct").to(device)
|
|
|
|
|
|
|
24 |
|
25 |
# Define the function to find the most relevant document
|
|
|
26 |
def retrieve_relevant_doc(query):
|
27 |
query_embedding = model.encode(query, convert_to_tensor=True, device=device)
|
28 |
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
29 |
best_match_idx = torch.argmax(similarities).item()
|
30 |
return df.iloc[best_match_idx]['Abstract']
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Define the function to generate a response
|
|
|
33 |
def generate_response(query):
|
34 |
relevant_doc = retrieve_relevant_doc(query)
|
35 |
+
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
|
36 |
+
inputs = llama_tokenizer(input_text, return_tensors="pt").to(device)
|
37 |
+
outputs = llama_model.generate(inputs["input_ids"], max_length=150)
|
38 |
+
response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
return response
|
40 |
|
41 |
# Create a Gradio interface
|
42 |
iface = gr.Interface(
|
43 |
fn=generate_response,
|
44 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your query here..."),
|
45 |
outputs="text",
|
46 |
title="RAG Chatbot",
|
47 |
+
description="This chatbot retrieves relevant documents based on your query and generates responses using LLaMA."
|
48 |
)
|
49 |
|
50 |
# Launch the Gradio interface
|