Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ else:
|
|
40 |
gpu_index = faiss.IndexFlatL2(dimension) # fall back to CPU
|
41 |
|
42 |
# Ensure embeddings are stacked as float32
|
43 |
-
embeddings = np.vstack(data['embedding'].values).astype(np.
|
44 |
logging.debug(f"Embeddings shape: {embeddings.shape}, dtype: {embeddings.dtype}")
|
45 |
gpu_index.add(embeddings)
|
46 |
|
@@ -61,7 +61,7 @@ def embed_question(question, model, tokenizer):
|
|
61 |
logging.debug(f"Tokenized inputs: {inputs}")
|
62 |
with torch.no_grad():
|
63 |
outputs = model(**inputs)
|
64 |
-
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy().astype(np.
|
65 |
logging.debug(f"Question embedding shape: {embedding.shape}")
|
66 |
logging.debug(f"Question embedding content: {embedding}")
|
67 |
return embedding
|
@@ -78,7 +78,7 @@ def retrieve_and_generate(question):
|
|
78 |
question_embedding = embed_question(question, model, tokenizer)
|
79 |
|
80 |
# Ensure the embedding is in the correct format for FAISS search
|
81 |
-
question_embedding = question_embedding.astype(np.
|
82 |
|
83 |
# Search in FAISS index
|
84 |
try:
|
|
|
40 |
gpu_index = faiss.IndexFlatL2(dimension) # fall back to CPU
|
41 |
|
42 |
# Ensure embeddings are stacked as float32
|
43 |
+
embeddings = np.vstack(data['embedding'].values).astype(np.float16)
|
44 |
logging.debug(f"Embeddings shape: {embeddings.shape}, dtype: {embeddings.dtype}")
|
45 |
gpu_index.add(embeddings)
|
46 |
|
|
|
61 |
logging.debug(f"Tokenized inputs: {inputs}")
|
62 |
with torch.no_grad():
|
63 |
outputs = model(**inputs)
|
64 |
+
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy().astype(np.float16)
|
65 |
logging.debug(f"Question embedding shape: {embedding.shape}")
|
66 |
logging.debug(f"Question embedding content: {embedding}")
|
67 |
return embedding
|
|
|
78 |
question_embedding = embed_question(question, model, tokenizer)
|
79 |
|
80 |
# Ensure the embedding is in the correct format for FAISS search
|
81 |
+
question_embedding = question_embedding.astype(np.float16)
|
82 |
|
83 |
# Search in FAISS index
|
84 |
try:
|