Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,9 +18,9 @@ embeddings = torch.tensor(df['embedding'].tolist(), device=device)
|
|
18 |
# Load the Sentence Transformer model
|
19 |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
|
20 |
|
21 |
-
# Load the
|
22 |
-
|
23 |
-
|
24 |
|
25 |
# Define the function to find the most relevant document
|
26 |
@spaces.GPU(duration=120)
|
@@ -35,9 +35,9 @@ def retrieve_relevant_doc(query):
|
|
35 |
def generate_response(query):
|
36 |
relevant_doc = retrieve_relevant_doc(query)
|
37 |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
|
38 |
-
inputs =
|
39 |
-
outputs =
|
40 |
-
response =
|
41 |
return response
|
42 |
|
43 |
# Create a Gradio interface
|
|
|
18 |
# Load the Sentence Transformer model
|
19 |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
|
20 |
|
21 |
+
# Load the ai model for response generation
|
22 |
+
ai_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
23 |
+
ai_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
|
24 |
|
25 |
# Define the function to find the most relevant document
|
26 |
@spaces.GPU(duration=120)
|
|
|
35 |
def generate_response(query):
|
36 |
relevant_doc = retrieve_relevant_doc(query)
|
37 |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
|
38 |
+
inputs = ai_tokenizer(input_text, return_tensors="pt").to(device)
|
39 |
+
outputs = ai_model.generate(inputs["input_ids"], max_length=1024)
|
40 |
+
response = ai_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
return response
|
42 |
|
43 |
# Create a Gradio interface
|