Yoxas commited on
Commit
e7abd03
·
verified ·
1 Parent(s): 1f3ecf4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -8
app.py CHANGED
@@ -1,17 +1,87 @@
1
  import gradio as gr
 
 
 
 
 
 
2
  import spaces
3
 
4
- @spaces.GPU
5
- def simple_greeting(name):
6
- return f"Hello {name}!"
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  interface = gr.Interface(
9
- fn=simple_greeting,
10
- inputs=gr.Textbox(lines=2, placeholder="Enter your name..."),
11
  outputs="text",
12
- title="Simple Greeting",
13
- description="Test Gradio Interface"
14
  )
15
 
16
  # Launch the Gradio app
17
- interface.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from transformers import pipeline, BertTokenizer, BertModel
5
+ import faiss
6
+ import torch
7
+ import json
8
  import spaces
9
 
10
+ # Load CSV data
11
+ data = pd.read_csv('RBDx10kstats.csv')
 
12
 
13
+ # Function to safely convert JSON strings to numpy arrays
14
+ def safe_json_loads(x):
15
+ try:
16
+ return np.array(json.loads(x), dtype=np.float32) # Ensure the array is of type float32
17
+ except json.JSONDecodeError as e:
18
+ print(f"Error decoding JSON: {e}")
19
+ return np.array([], dtype=np.float32) # Return an empty array or handle it as appropriate
20
+
21
+ # Apply the safe_json_loads function to the embedding column
22
+ data['embedding'] = data['embedding'].apply(safe_json_loads)
23
+
24
+ # Filter out any rows with empty embeddings
25
+ data = data[data['embedding'].apply(lambda x: x.size > 0)]
26
+
27
+ # Initialize FAISS index
28
+ dimension = len(data['embedding'].iloc[0])
29
+ res = faiss.StandardGpuResources() # use a single GPU
30
+
31
+ # Create FAISS index
32
+ if faiss.get_num_gpus() > 0:
33
+ gpu_index = faiss.IndexFlatL2(dimension)
34
+ gpu_index = faiss.index_cpu_to_gpu(res, 0, gpu_index) # move to GPU
35
+ else:
36
+ gpu_index = faiss.IndexFlatL2(dimension) # fall back to CPU
37
+
38
+ # Ensure embeddings are stacked as float32
39
+ embeddings = np.vstack(data['embedding'].values).astype(np.float32)
40
+ gpu_index.add(embeddings)
41
+
42
+ # Check if GPU is available
43
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
44
+
45
+ # Load QA model
46
+ qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=0 if torch.cuda.is_available() else -1)
47
+
48
+ # Load BERT model and tokenizer
49
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
50
+ model = BertModel.from_pretrained('bert-base-uncased').to(device)
51
+
52
+ # Function to embed the question using BERT
53
+ def embed_question(question, model, tokenizer):
54
+ inputs = tokenizer(question, return_tensors='pt').to(device)
55
+ with torch.no_grad():
56
+ outputs = model(**inputs)
57
+ return outputs.last_hidden_state.mean(dim=1).cpu().numpy().astype(np.float32)
58
+
59
+ # Function to retrieve the relevant document and generate a response
60
+ @spaces.GPU(duration=120)
61
+ def retrieve_and_generate(question):
62
+ # Embed the question
63
+ question_embedding = embed_question(question, model, tokenizer)
64
+
65
+ # Search in FAISS index
66
+ _, indices = gpu_index.search(question_embedding, k=1)
67
+
68
+ # Retrieve the most relevant document
69
+ relevant_doc = data.iloc[indices[0][0]]
70
+
71
+ # Use the QA model to generate the answer
72
+ context = relevant_doc['Abstract']
73
+ response = qa_model(question=question, context=context)
74
+
75
+ return response['answer']
76
+
77
+ # Create a Gradio interface
78
  interface = gr.Interface(
79
+ fn=retrieve_and_generate,
80
+ inputs=gr.Textbox(lines=2, placeholder="Ask a question about the documents..."),
81
  outputs="text",
82
+ title="RAG Chatbot",
83
+ description="Ask questions about the documents in the CSV file."
84
  )
85
 
86
  # Launch the Gradio app
87
+ interface.launch()