import pandas as pd import torch from sentence_transformers import SentenceTransformer, util import gradio as gr import json from transformers import AutoTokenizer, AutoModelForCausalLM import spaces # Ensure you have GPU support device = 'cuda' if torch.cuda.is_available() else 'cpu' # Load the CSV file with embeddings df = pd.read_csv('RBDx10kstats.csv') df['Abstract'] = df['Abstract'].apply(json.loads) # Convert JSON string back to list # Convert embeddings to tensor for efficient retrieval embeddings = torch.tensor(df['Abstract'].tolist(), device=device) # Load the Sentence Transformer model model = SentenceTransformer('all-MiniLM-L6-v2', device=device) # Load the ai model for response generation ai_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-large") ai_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2-large").to(device) # Define the function to find the most relevant document @spaces.GPU(duration=120) def retrieve_relevant_doc(query): query_embedding = model.encode(query, convert_to_tensor=True, device=device) similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0] best_match_idx = torch.argmax(similarities).item() return df.iloc[best_match_idx]['Abstract'] # Define the function to generate a response @spaces.GPU(duration=120) def generate_response(query): relevant_doc = retrieve_relevant_doc(query) input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:" inputs = ai_tokenizer(input_text, return_tensors="pt").to(device) outputs = ai_model.generate(inputs["input_ids"], max_length=1024) response = ai_tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create a Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."), outputs="text", title="RAG Chatbot", description="This chatbot retrieves relevant documents based on your query and generates responses using ai models." ) # Launch the Gradio interface iface.launch()