import librosa import numpy as np from torch.utils import data # 加载并预处理音频 def load_audio(audio_path, mode='train', win_length=400, sr=16000, hop_length=160, n_fft=512, spec_len=257): # 读取音频数据 wav, sr_ret = librosa.load(audio_path, sr=sr) # 数据拼接 if mode == 'train': extended_wav = np.append(wav, wav) if np.random.random() < 0.3: extended_wav = extended_wav[::-1] else: extended_wav = np.append(wav, wav[::-1]) # 计算短时傅里叶变换 linear = librosa.stft(extended_wav, n_fft=n_fft, win_length=win_length, hop_length=hop_length) mag, _ = librosa.magphase(linear) freq, freq_time = mag.shape assert freq_time >= spec_len, "非静音部分长度不能低于1.3s" if mode == 'train': # 随机裁剪 rand_time = np.random.randint(0, freq_time - spec_len) spec_mag = mag[:, rand_time:rand_time + spec_len] else: spec_mag = mag[:, :spec_len] mean = np.mean(spec_mag, 0, keepdims=True) std = np.std(spec_mag, 0, keepdims=True) spec_mag = (spec_mag - mean) / (std + 1e-5) spec_mag = spec_mag[np.newaxis, :] return spec_mag # 数据加载器 class CustomDataset(data.Dataset): def __init__(self, data_list_path, model='train', spec_len=257): super(CustomDataset, self).__init__() with open(data_list_path, 'r') as f: self.lines = f.readlines() self.model = model self.spec_len = spec_len def __getitem__(self, idx): audio_path, label = self.lines[idx].replace('\n', '').split('\t') spec_mag = load_audio(audio_path, mode=self.model, spec_len=self.spec_len) return spec_mag, np.array(int(label), dtype=np.int64) def __len__(self): return len(self.lines)