File size: 5,461 Bytes
759b91c
ef882a8
 
f2bc084
 
 
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2bc084
 
 
 
 
 
 
 
 
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2bc084
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2bc084
 
 
 
 
 
 
 
 
 
 
 
 
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec983f
9fbf1b0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
from ominicontrol import generate_image

import spaces

USE_ZERO_GPU = False

css = """
.inputPanel {
    width: 320px;
    display: flex;
    align-items: center;
}
.outputPanel {
    display: flex;
    align-items: center;
}
.hint {
    font-size: 14px;
    color: #777;
    # border: 1px solid #ccc;
    padding: 4px;
    border-radius: 5px;
    # background-color: #efefef;
}
"""

header = """
# 🌍 OminiControl Art
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2411.15098"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://github.com/Yuanshi9815/OminiControl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""



def style_transfer(image, style):
    return image


styles = [
    "Studio Ghibli",
    "Irasutoya Illustration",
    "The Simpsons",
    "Snoopy",
]


def gradio_interface():
    with gr.Blocks(css=css) as demo:
        gr.Markdown(header)
        with gr.Row(equal_height=False):
            with gr.Column(variant="panel", elem_classes="inputPanel"):
                original_image = gr.Image(
                    type="pil",
                    label="Condition Image",
                    width=400,
                    height=400,
                )
                style = gr.Radio(
                    styles,
                    label="🎨 Select Style",
                    value=styles[0],
                )
                # Advanced settings
                with gr.Accordion(
                    "⚙️ Advanced Settings", open=False
                ) as advanced_settings:
                    inference_mode = gr.Radio(
                        ["High Quality", "Fast"],
                        value="High Quality",
                        label="Generating Mode",
                    )
                    image_ratio = gr.Radio(
                        ["Auto", "Square(1:1)", "Portrait(2:3)", "Landscape(3:2)"],
                        label="Image Ratio",
                        value="Auto",
                    )
                    use_random_seed = gr.Checkbox(label="Use Random Seed", value=True)
                    seed = gr.Number(
                        label="Seed",
                        value=42,
                        visible=(not use_random_seed.value),
                    )
                    use_random_seed.change(
                        lambda x: gr.update(visible=(not x)),
                        use_random_seed,
                        seed,
                        show_progress="hidden",
                    )
                    image_guidance = gr.Slider(
                        label="Image Guidance",
                        minimum=1.1,
                        maximum=5,
                        value=1.5,
                        step=0.1,
                    )
                    steps = gr.Slider(
                        label="Steps",
                        minimum=10,
                        maximum=50,
                        value=20,
                        step=1,
                    )
                    inference_mode.change(
                        lambda x: gr.update(interactive=(x == "High Quality")),
                        inference_mode,
                        image_guidance,
                        show_progress="hidden",
                    )

                btn = gr.Button("Generate Image")

            with gr.Column(elem_classes="outputPanel"):
                output_images = gr.Image(
                    type="pil",
                    width=640,
                    height=640,
                    label="Output Image",
                )

        with gr.Row():
            examples = gr.Examples(
                examples=[
                    ["examples/DistractedBoyfriend.webp", styles[0]],
                    ["examples/steve.webp", styles[0]],
                    ["examples/oiiai.png", styles[1]],
                    ["examples/doge.jpg", styles[1]],
                    ["examples/breakingbad.jpg", styles[2]],
                    ["examples/PulpFiction.jpg", styles[3]],
                ],
                inputs=[original_image, style],
            )

        btn.click(
            fn=infer,
            inputs=[
                style,
                original_image,
                inference_mode,
                image_guidance,
                image_ratio,
                use_random_seed,
                seed,
                steps,
            ],
            outputs=output_images,
        )

    return demo


def infer(
    style,
    original_image,
    inference_mode,
    image_guidance,
    image_ratio,
    use_random_seed,
    seed,
    steps,
):
    print(
        f"Style: {style}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Image Ratio: {image_ratio}, Use Random Seed: {use_random_seed}, Seed: {seed}"
    )
    result_image = generate_image(
        image=original_image,
        style=style,
        inference_mode=inference_mode,
        image_guidance=image_guidance,
        image_ratio=image_ratio,
        use_random_seed=use_random_seed,
        seed=seed,
        steps=steps,
    )
    return result_image


if USE_ZERO_GPU:
    infer = spaces.GPU(infer)

if __name__ == "__main__":
    demo = gradio_interface()
    demo.launch(
        debug=True,
        server_name="0.0.0.0",
    )