Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
from pipeline_flux import FluxPipeline | |
from transformer_flux import FluxTransformer2DModel | |
import torch | |
flux_model = "schnell" | |
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
transformer = FluxTransformer2DModel.from_pretrained( | |
bfl_repo, subfolder="transformer", torch_dtype=dtype | |
) | |
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype) | |
pipe.transformer = transformer | |
pipe.scheduler.config.use_dynamic_shifting = False | |
pipe.scheduler.config.time_shift = 10 | |
# pipe.enable_model_cpu_offload() | |
pipe = pipe.to(device) | |
pipe.load_lora_weights( | |
"Huage001/URAE", | |
weight_name="urae_2k_adapter.safetensors", | |
adapter_name="2k", | |
) | |
pipe.load_lora_weights( | |
"Huage001/URAE", | |
weight_name="urae_4k_adapter_lora_conversion_dev.safetensors", | |
adapter_name="4k_dev", | |
) | |
pipe.load_lora_weights( | |
"Huage001/URAE", | |
weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors", | |
adapter_name="4k_schnell", | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 4096 | |
USE_ZERO_GPU = True | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
num_inference_steps, | |
model='2k', | |
progress=gr.Progress(track_tqdm=True), | |
): | |
print("Using model:", model) | |
if model == "2k": | |
pipe.vae.enable_tiling(True) | |
pipe.set_adapters("2k") | |
elif model == "4k": | |
pipe.vae.enable_tiling(True) | |
pipe.set_adapters(f"4k_{flux_model}") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
guidance_scale=0, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
max_sequence_length=256, | |
ntk_factor=10, | |
proportional_attention=True, | |
generator=generator, | |
).images[0] | |
return image, seed | |
if USE_ZERO_GPU: | |
infer = spaces.GPU(infer, duration=360) | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#maincontainer { | |
display: flex; | |
} | |
#col1 { | |
margin: 0 auto; | |
max-width: 50%; | |
} | |
#col2 { | |
margin: 0 auto; | |
# max-width: 40px; | |
} | |
""" | |
head = """> ***U*ltra-*R*esolution *A*daptation with *E*ase** | |
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;"> | |
<a href="https://arxiv.org/abs/2503.16322"><img src="https://img.shields.io/badge/arXiv-2503.16322-A42C25.svg" alt="arXiv"></a> | |
<a href="https://huggingface.co/Huage001/URAE"><img src="https://img.shields.io/badge/π€_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a> | |
<a href="https://huggingface.co/spaces/Yuanshi/URAE"><img src="https://img.shields.io/badge/π€_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a> | |
<a href="https://huggingface.co/spaces/Yuanshi/URAE_dev"><img src="https://img.shields.io/badge/π€_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# URAE (FLUX.1 schnell) \n" + head) | |
with gr.Row(elem_id="maincontainer"): | |
with gr.Column(elem_id="col1"): | |
gr.Markdown("### Prompt:") | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
run_button = gr.Button("Generate", scale=1, variant="primary") | |
gr.Markdown("### Setting:") | |
# model = gr.Radio( | |
# label="Model", | |
# choices=[ | |
# ("2K model", "2k"), | |
# ("4K model (beta)", "4k"), | |
# ], | |
# value="2k", | |
# ) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=2048, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=2048, # Replace with defaults that work for your model | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, # Replace with defaults that work for your model | |
) | |
with gr.Column(elem_id="col2"): | |
result = gr.Image(label="Result", show_label=False) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
# model, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |