URAE / app.py
Yuanshi's picture
Update app.py
cd7f231 verified
import gradio as gr
import numpy as np
import random
import spaces
from pipeline_flux import FluxPipeline
from transformer_flux import FluxTransformer2DModel
import torch
flux_model = "schnell"
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
transformer = FluxTransformer2DModel.from_pretrained(
bfl_repo, subfolder="transformer", torch_dtype=dtype
)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.scheduler.config.use_dynamic_shifting = False
pipe.scheduler.config.time_shift = 10
# pipe.enable_model_cpu_offload()
pipe = pipe.to(device)
pipe.load_lora_weights(
"Huage001/URAE",
weight_name="urae_2k_adapter.safetensors",
adapter_name="2k",
)
pipe.load_lora_weights(
"Huage001/URAE",
weight_name="urae_4k_adapter_lora_conversion_dev.safetensors",
adapter_name="4k_dev",
)
pipe.load_lora_weights(
"Huage001/URAE",
weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors",
adapter_name="4k_schnell",
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
USE_ZERO_GPU = True
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
seed,
randomize_seed,
width,
height,
num_inference_steps,
model='2k',
progress=gr.Progress(track_tqdm=True),
):
print("Using model:", model)
if model == "2k":
pipe.vae.enable_tiling(True)
pipe.set_adapters("2k")
elif model == "4k":
pipe.vae.enable_tiling(True)
pipe.set_adapters(f"4k_{flux_model}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=0,
num_inference_steps=num_inference_steps,
width=width,
height=height,
max_sequence_length=256,
ntk_factor=10,
proportional_attention=True,
generator=generator,
).images[0]
return image, seed
if USE_ZERO_GPU:
infer = spaces.GPU(infer, duration=360)
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#maincontainer {
display: flex;
}
#col1 {
margin: 0 auto;
max-width: 50%;
}
#col2 {
margin: 0 auto;
# max-width: 40px;
}
"""
head = """> ***U*ltra-*R*esolution *A*daptation with *E*ase**
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2503.16322"><img src="https://img.shields.io/badge/arXiv-2503.16322-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/Huage001/URAE"><img src="https://img.shields.io/badge/πŸ€—_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Yuanshi/URAE"><img src="https://img.shields.io/badge/πŸ€—_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Yuanshi/URAE_dev"><img src="https://img.shields.io/badge/πŸ€—_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a>
</div>
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# URAE (FLUX.1 schnell) \n" + head)
with gr.Row(elem_id="maincontainer"):
with gr.Column(elem_id="col1"):
gr.Markdown("### Prompt:")
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
gr.Examples(examples=examples, inputs=[prompt])
run_button = gr.Button("Generate", scale=1, variant="primary")
gr.Markdown("### Setting:")
# model = gr.Radio(
# label="Model",
# choices=[
# ("2K model", "2k"),
# ("4K model (beta)", "4k"),
# ],
# value="2k",
# )
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=2048, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=2048, # Replace with defaults that work for your model
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4, # Replace with defaults that work for your model
)
with gr.Column(elem_id="col2"):
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
# model,
seed,
randomize_seed,
width,
height,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()