Spaces:
Running
on
Zero
Running
on
Zero
INITIAL (#1)
Browse files- init (ebe762986cf14689720082ee028e02e25c6a7d63)
- update (91cb2deb579da9440d3c61a0d2197a84fcd19313)
- app.py +94 -59
- attention_processor.py +253 -0
- pipeline_flux.py +789 -0
- transformer_flux.py +560 -0
app.py
CHANGED
@@ -2,37 +2,65 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
-
|
6 |
-
from
|
|
|
7 |
import torch
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
pipe = pipe.to(device)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE =
|
|
|
22 |
|
23 |
|
24 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
27 |
-
|
28 |
seed,
|
29 |
randomize_seed,
|
30 |
width,
|
31 |
height,
|
32 |
-
guidance_scale,
|
33 |
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
|
@@ -40,17 +68,22 @@ def infer(
|
|
40 |
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
-
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
num_inference_steps=num_inference_steps,
|
46 |
width=width,
|
47 |
height=height,
|
|
|
|
|
|
|
48 |
generator=generator,
|
49 |
).images[0]
|
50 |
|
51 |
return image, seed
|
52 |
|
53 |
|
|
|
|
|
|
|
54 |
examples = [
|
55 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
"An astronaut riding a green horse",
|
@@ -58,17 +91,25 @@ examples = [
|
|
58 |
]
|
59 |
|
60 |
css = """
|
61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
74 |
show_label=False,
|
@@ -77,35 +118,27 @@ with gr.Blocks(css=css) as demo:
|
|
77 |
container=False,
|
78 |
)
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
)
|
99 |
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
@@ -113,38 +146,40 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=
|
117 |
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
140 |
inputs=[
|
141 |
prompt,
|
142 |
-
|
143 |
seed,
|
144 |
randomize_seed,
|
145 |
width,
|
146 |
height,
|
147 |
-
guidance_scale,
|
148 |
num_inference_steps,
|
149 |
],
|
150 |
outputs=[result, seed],
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
+
import spaces
|
6 |
+
from pipeline_flux import FluxPipeline
|
7 |
+
from transformer_flux import FluxTransformer2DModel
|
8 |
import torch
|
9 |
+
from patch_conv import convert_model
|
10 |
|
11 |
+
flux_model = "schnell"
|
12 |
+
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}"
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
dtype = torch.bfloat16
|
16 |
+
|
17 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
18 |
+
bfl_repo, subfolder="transformer", torch_dtype=dtype
|
19 |
+
)
|
20 |
+
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype)
|
21 |
+
pipe.transformer = transformer
|
22 |
+
pipe.scheduler.config.use_dynamic_shifting = False
|
23 |
+
pipe.scheduler.config.time_shift = 10
|
24 |
+
# pipe.enable_model_cpu_offload()
|
25 |
pipe = pipe.to(device)
|
26 |
|
27 |
+
pipe.load_lora_weights(
|
28 |
+
"Huage001/URAE",
|
29 |
+
weight_name="urae_2k_adapter.safetensors",
|
30 |
+
adapter_name="2k",
|
31 |
+
)
|
32 |
+
pipe.load_lora_weights(
|
33 |
+
"Huage001/URAE",
|
34 |
+
weight_name="urae_4k_adapter_lora_conversion_dev.safetensors",
|
35 |
+
adapter_name="4k_dev",
|
36 |
+
)
|
37 |
+
pipe.load_lora_weights(
|
38 |
+
"Huage001/URAE",
|
39 |
+
weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors",
|
40 |
+
adapter_name="4k_schnell",
|
41 |
+
)
|
42 |
MAX_SEED = np.iinfo(np.int32).max
|
43 |
+
MAX_IMAGE_SIZE = 4096
|
44 |
+
USE_ZERO_GPU = True
|
45 |
|
46 |
|
47 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
48 |
def infer(
|
49 |
prompt,
|
50 |
+
model,
|
51 |
seed,
|
52 |
randomize_seed,
|
53 |
width,
|
54 |
height,
|
|
|
55 |
num_inference_steps,
|
56 |
progress=gr.Progress(track_tqdm=True),
|
57 |
):
|
58 |
+
print("Using model:", model)
|
59 |
+
if model == "2k":
|
60 |
+
pipe.set_adapters("2k")
|
61 |
+
elif model == "4k":
|
62 |
+
pipe.set_adapters(f"4k_{flux_model}")
|
63 |
+
|
64 |
if randomize_seed:
|
65 |
seed = random.randint(0, MAX_SEED)
|
66 |
|
|
|
68 |
|
69 |
image = pipe(
|
70 |
prompt=prompt,
|
71 |
+
guidance_scale=0,
|
|
|
72 |
num_inference_steps=num_inference_steps,
|
73 |
width=width,
|
74 |
height=height,
|
75 |
+
max_sequence_length=256,
|
76 |
+
ntk_factor=10,
|
77 |
+
proportional_attention=True,
|
78 |
generator=generator,
|
79 |
).images[0]
|
80 |
|
81 |
return image, seed
|
82 |
|
83 |
|
84 |
+
if USE_ZERO_GPU:
|
85 |
+
infer = spaces.GPU(infer)
|
86 |
+
|
87 |
examples = [
|
88 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
89 |
"An astronaut riding a green horse",
|
|
|
91 |
]
|
92 |
|
93 |
css = """
|
94 |
+
#maincontainer {
|
95 |
+
display: flex;
|
96 |
+
}
|
97 |
+
|
98 |
+
#col1 {
|
99 |
+
margin: 0 auto;
|
100 |
+
max-width: 50%;
|
101 |
+
}
|
102 |
+
#col2 {
|
103 |
margin: 0 auto;
|
104 |
+
# max-width: 40px;
|
105 |
}
|
106 |
"""
|
107 |
|
108 |
with gr.Blocks(css=css) as demo:
|
109 |
+
gr.Markdown("# URAE: ")
|
110 |
+
with gr.Row(elem_id="maincontainer"):
|
111 |
+
with gr.Column(elem_id="col1"):
|
112 |
+
gr.Markdown("### Prompt:")
|
113 |
prompt = gr.Text(
|
114 |
label="Prompt",
|
115 |
show_label=False,
|
|
|
118 |
container=False,
|
119 |
)
|
120 |
|
121 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
122 |
+
run_button = gr.Button("Generate", scale=1, variant="primary")
|
123 |
|
124 |
+
gr.Markdown("### Setting:")
|
125 |
|
126 |
+
model = gr.Radio(
|
127 |
+
label="Model",
|
128 |
+
choices=[
|
129 |
+
("2K model", "2k"),
|
130 |
+
("4K model (beta)", "4k"),
|
131 |
+
],
|
132 |
+
value="2k",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
)
|
134 |
|
|
|
|
|
135 |
with gr.Row():
|
136 |
width = gr.Slider(
|
137 |
label="Width",
|
138 |
minimum=256,
|
139 |
maximum=MAX_IMAGE_SIZE,
|
140 |
step=32,
|
141 |
+
value=2048, # Replace with defaults that work for your model
|
142 |
)
|
143 |
|
144 |
height = gr.Slider(
|
|
|
146 |
minimum=256,
|
147 |
maximum=MAX_IMAGE_SIZE,
|
148 |
step=32,
|
149 |
+
value=2048, # Replace with defaults that work for your model
|
150 |
)
|
151 |
|
152 |
+
seed = gr.Slider(
|
153 |
+
label="Seed",
|
154 |
+
minimum=0,
|
155 |
+
maximum=MAX_SEED,
|
156 |
+
step=1,
|
157 |
+
value=0,
|
158 |
+
)
|
|
|
159 |
|
160 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
161 |
+
|
162 |
+
num_inference_steps = gr.Slider(
|
163 |
+
label="Number of inference steps",
|
164 |
+
minimum=1,
|
165 |
+
maximum=50,
|
166 |
+
step=1,
|
167 |
+
value=4, # Replace with defaults that work for your model
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Column(elem_id="col2"):
|
171 |
+
result = gr.Image(label="Result", show_label=False)
|
172 |
|
|
|
173 |
gr.on(
|
174 |
triggers=[run_button.click, prompt.submit],
|
175 |
fn=infer,
|
176 |
inputs=[
|
177 |
prompt,
|
178 |
+
model,
|
179 |
seed,
|
180 |
randomize_seed,
|
181 |
width,
|
182 |
height,
|
|
|
183 |
num_inference_steps,
|
184 |
],
|
185 |
outputs=[result, seed],
|
attention_processor.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import math
|
5 |
+
from diffusers.models.attention_processor import Attention
|
6 |
+
from typing import Optional
|
7 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
8 |
+
|
9 |
+
|
10 |
+
class FluxAttnProcessor2_0:
|
11 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
12 |
+
|
13 |
+
def __init__(self, train_seq_len=512 + 64 * 64):
|
14 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
15 |
+
raise ImportError(
|
16 |
+
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
17 |
+
)
|
18 |
+
self.train_seq_len = train_seq_len
|
19 |
+
|
20 |
+
def __call__(
|
21 |
+
self,
|
22 |
+
attn: Attention,
|
23 |
+
hidden_states: torch.FloatTensor,
|
24 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
25 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
26 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
27 |
+
proportional_attention=False,
|
28 |
+
) -> torch.FloatTensor:
|
29 |
+
batch_size, _, _ = (
|
30 |
+
hidden_states.shape
|
31 |
+
if encoder_hidden_states is None
|
32 |
+
else encoder_hidden_states.shape
|
33 |
+
)
|
34 |
+
|
35 |
+
# `sample` projections.
|
36 |
+
query = attn.to_q(hidden_states)
|
37 |
+
key = attn.to_k(hidden_states)
|
38 |
+
value = attn.to_v(hidden_states)
|
39 |
+
|
40 |
+
inner_dim = key.shape[-1]
|
41 |
+
head_dim = inner_dim // attn.heads
|
42 |
+
|
43 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
44 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
45 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
46 |
+
|
47 |
+
if attn.norm_q is not None:
|
48 |
+
query = attn.norm_q(query)
|
49 |
+
if attn.norm_k is not None:
|
50 |
+
key = attn.norm_k(key)
|
51 |
+
|
52 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
53 |
+
if encoder_hidden_states is not None:
|
54 |
+
# `context` projections.
|
55 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
56 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
57 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
58 |
+
|
59 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
60 |
+
batch_size, -1, attn.heads, head_dim
|
61 |
+
).transpose(1, 2)
|
62 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
63 |
+
batch_size, -1, attn.heads, head_dim
|
64 |
+
).transpose(1, 2)
|
65 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
66 |
+
batch_size, -1, attn.heads, head_dim
|
67 |
+
).transpose(1, 2)
|
68 |
+
|
69 |
+
if attn.norm_added_q is not None:
|
70 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
71 |
+
encoder_hidden_states_query_proj
|
72 |
+
)
|
73 |
+
if attn.norm_added_k is not None:
|
74 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
75 |
+
encoder_hidden_states_key_proj
|
76 |
+
)
|
77 |
+
|
78 |
+
# attention
|
79 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
80 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
81 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
82 |
+
|
83 |
+
if image_rotary_emb is not None:
|
84 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
85 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
86 |
+
|
87 |
+
if proportional_attention:
|
88 |
+
attention_scale = math.sqrt(
|
89 |
+
math.log(key.size(2), self.train_seq_len) / head_dim
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
attention_scale = math.sqrt(1 / head_dim)
|
93 |
+
|
94 |
+
hidden_states = F.scaled_dot_product_attention(
|
95 |
+
query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale
|
96 |
+
)
|
97 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
98 |
+
batch_size, -1, attn.heads * head_dim
|
99 |
+
)
|
100 |
+
hidden_states = hidden_states.to(query.dtype)
|
101 |
+
|
102 |
+
if encoder_hidden_states is not None:
|
103 |
+
encoder_hidden_states, hidden_states = (
|
104 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
105 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
106 |
+
)
|
107 |
+
|
108 |
+
# linear proj
|
109 |
+
hidden_states = attn.to_out[0](hidden_states)
|
110 |
+
# dropout
|
111 |
+
hidden_states = attn.to_out[1](hidden_states)
|
112 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
113 |
+
|
114 |
+
return hidden_states, encoder_hidden_states
|
115 |
+
else:
|
116 |
+
return hidden_states
|
117 |
+
|
118 |
+
|
119 |
+
class FluxAttnAdaptationProcessor2_0(nn.Module):
|
120 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
121 |
+
|
122 |
+
def __init__(self, rank=16, dim=3072, to_out=False, train_seq_len=512 + 64 * 64):
|
123 |
+
super().__init__()
|
124 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
125 |
+
raise ImportError(
|
126 |
+
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
127 |
+
)
|
128 |
+
self.to_q_a = nn.Linear(dim, rank, bias=False)
|
129 |
+
self.to_q_b = nn.Linear(rank, dim, bias=False)
|
130 |
+
self.to_q_b.weight.data = torch.zeros_like(self.to_q_b.weight.data)
|
131 |
+
self.to_k_a = nn.Linear(dim, rank, bias=False)
|
132 |
+
self.to_k_b = nn.Linear(rank, dim, bias=False)
|
133 |
+
self.to_k_b.weight.data = torch.zeros_like(self.to_k_b.weight.data)
|
134 |
+
self.to_v_a = nn.Linear(dim, rank, bias=False)
|
135 |
+
self.to_v_b = nn.Linear(rank, dim, bias=False)
|
136 |
+
self.to_v_b.weight.data = torch.zeros_like(self.to_v_b.weight.data)
|
137 |
+
if to_out:
|
138 |
+
self.to_out_a = nn.Linear(dim, rank, bias=False)
|
139 |
+
self.to_out_b = nn.Linear(rank, dim, bias=False)
|
140 |
+
self.to_out_b.weight.data = torch.zeros_like(self.to_out_b.weight.data)
|
141 |
+
self.train_seq_len = train_seq_len
|
142 |
+
|
143 |
+
def __call__(
|
144 |
+
self,
|
145 |
+
attn: Attention,
|
146 |
+
hidden_states: torch.FloatTensor,
|
147 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
148 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
149 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
150 |
+
proportional_attention=False,
|
151 |
+
) -> torch.FloatTensor:
|
152 |
+
batch_size, _, _ = (
|
153 |
+
hidden_states.shape
|
154 |
+
if encoder_hidden_states is None
|
155 |
+
else encoder_hidden_states.shape
|
156 |
+
)
|
157 |
+
|
158 |
+
use_adaptation = True
|
159 |
+
|
160 |
+
# `sample` projections.
|
161 |
+
query = attn.to_q(hidden_states)
|
162 |
+
key = attn.to_k(hidden_states)
|
163 |
+
value = attn.to_v(hidden_states)
|
164 |
+
|
165 |
+
if use_adaptation:
|
166 |
+
query += self.to_q_b(self.to_q_a(hidden_states))
|
167 |
+
key += self.to_k_b(self.to_k_a(hidden_states))
|
168 |
+
value += self.to_v_b(self.to_v_a(hidden_states))
|
169 |
+
|
170 |
+
inner_dim = key.shape[-1]
|
171 |
+
head_dim = inner_dim // attn.heads
|
172 |
+
|
173 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
174 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
175 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
176 |
+
|
177 |
+
if attn.norm_q is not None:
|
178 |
+
query = attn.norm_q(query)
|
179 |
+
if attn.norm_k is not None:
|
180 |
+
key = attn.norm_k(key)
|
181 |
+
|
182 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
183 |
+
if encoder_hidden_states is not None:
|
184 |
+
# `context` projections.
|
185 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
186 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
187 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
188 |
+
|
189 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
190 |
+
batch_size, -1, attn.heads, head_dim
|
191 |
+
).transpose(1, 2)
|
192 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
193 |
+
batch_size, -1, attn.heads, head_dim
|
194 |
+
).transpose(1, 2)
|
195 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
196 |
+
batch_size, -1, attn.heads, head_dim
|
197 |
+
).transpose(1, 2)
|
198 |
+
|
199 |
+
if attn.norm_added_q is not None:
|
200 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
201 |
+
encoder_hidden_states_query_proj
|
202 |
+
)
|
203 |
+
if attn.norm_added_k is not None:
|
204 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
205 |
+
encoder_hidden_states_key_proj
|
206 |
+
)
|
207 |
+
|
208 |
+
# attention
|
209 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
210 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
211 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
212 |
+
|
213 |
+
if image_rotary_emb is not None:
|
214 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
215 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
216 |
+
|
217 |
+
if proportional_attention:
|
218 |
+
attention_scale = math.sqrt(
|
219 |
+
math.log(key.size(2), self.train_seq_len) / head_dim
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
attention_scale = math.sqrt(1 / head_dim)
|
223 |
+
|
224 |
+
hidden_states = F.scaled_dot_product_attention(
|
225 |
+
query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale
|
226 |
+
)
|
227 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
228 |
+
batch_size, -1, attn.heads * head_dim
|
229 |
+
)
|
230 |
+
hidden_states = hidden_states.to(query.dtype)
|
231 |
+
|
232 |
+
if encoder_hidden_states is not None:
|
233 |
+
encoder_hidden_states, hidden_states = (
|
234 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
235 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
236 |
+
)
|
237 |
+
|
238 |
+
# linear proj
|
239 |
+
hidden_states = (
|
240 |
+
(
|
241 |
+
attn.to_out[0](hidden_states)
|
242 |
+
+ self.to_out_b(self.to_out_a(hidden_states))
|
243 |
+
)
|
244 |
+
if use_adaptation
|
245 |
+
else attn.to_out[0](hidden_states)
|
246 |
+
)
|
247 |
+
# dropout
|
248 |
+
hidden_states = attn.to_out[1](hidden_states)
|
249 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
250 |
+
|
251 |
+
return hidden_states, encoder_hidden_states
|
252 |
+
else:
|
253 |
+
return hidden_states
|
pipeline_flux.py
ADDED
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
21 |
+
|
22 |
+
from diffusers.image_processor import VaeImageProcessor
|
23 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
24 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
25 |
+
from diffusers.models.transformers import FluxTransformer2DModel
|
26 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
27 |
+
from diffusers.utils import (
|
28 |
+
USE_PEFT_BACKEND,
|
29 |
+
is_torch_xla_available,
|
30 |
+
logging,
|
31 |
+
replace_example_docstring,
|
32 |
+
scale_lora_layers,
|
33 |
+
unscale_lora_layers,
|
34 |
+
)
|
35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
36 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
37 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
38 |
+
|
39 |
+
|
40 |
+
if is_torch_xla_available():
|
41 |
+
import torch_xla.core.xla_model as xm
|
42 |
+
|
43 |
+
XLA_AVAILABLE = True
|
44 |
+
else:
|
45 |
+
XLA_AVAILABLE = False
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
49 |
+
|
50 |
+
EXAMPLE_DOC_STRING = """
|
51 |
+
Examples:
|
52 |
+
```py
|
53 |
+
>>> import torch
|
54 |
+
>>> from diffusers import FluxPipeline
|
55 |
+
|
56 |
+
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
57 |
+
>>> pipe.to("cuda")
|
58 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
59 |
+
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
60 |
+
>>> # Refer to the pipeline documentation for more details.
|
61 |
+
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
|
62 |
+
>>> image.save("flux.png")
|
63 |
+
```
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
def calculate_shift(
|
68 |
+
image_seq_len,
|
69 |
+
base_seq_len: int = 256,
|
70 |
+
max_seq_len: int = 4096,
|
71 |
+
base_shift: float = 0.5,
|
72 |
+
max_shift: float = 1.16,
|
73 |
+
):
|
74 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
75 |
+
b = base_shift - m * base_seq_len
|
76 |
+
mu = image_seq_len * m + b
|
77 |
+
return mu
|
78 |
+
|
79 |
+
|
80 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
81 |
+
def retrieve_timesteps(
|
82 |
+
scheduler,
|
83 |
+
num_inference_steps: Optional[int] = None,
|
84 |
+
device: Optional[Union[str, torch.device]] = None,
|
85 |
+
timesteps: Optional[List[int]] = None,
|
86 |
+
sigmas: Optional[List[float]] = None,
|
87 |
+
**kwargs,
|
88 |
+
):
|
89 |
+
r"""
|
90 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
91 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
scheduler (`SchedulerMixin`):
|
95 |
+
The scheduler to get timesteps from.
|
96 |
+
num_inference_steps (`int`):
|
97 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
98 |
+
must be `None`.
|
99 |
+
device (`str` or `torch.device`, *optional*):
|
100 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
101 |
+
timesteps (`List[int]`, *optional*):
|
102 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
103 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
104 |
+
sigmas (`List[float]`, *optional*):
|
105 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
106 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
110 |
+
second element is the number of inference steps.
|
111 |
+
"""
|
112 |
+
if timesteps is not None and sigmas is not None:
|
113 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
114 |
+
if timesteps is not None:
|
115 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
116 |
+
if not accepts_timesteps:
|
117 |
+
raise ValueError(
|
118 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
119 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
120 |
+
)
|
121 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
122 |
+
timesteps = scheduler.timesteps
|
123 |
+
num_inference_steps = len(timesteps)
|
124 |
+
elif sigmas is not None:
|
125 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
126 |
+
if not accept_sigmas:
|
127 |
+
raise ValueError(
|
128 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
129 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
130 |
+
)
|
131 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
132 |
+
timesteps = scheduler.timesteps
|
133 |
+
num_inference_steps = len(timesteps)
|
134 |
+
else:
|
135 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
136 |
+
timesteps = scheduler.timesteps
|
137 |
+
return timesteps, num_inference_steps
|
138 |
+
|
139 |
+
|
140 |
+
class FluxPipeline(
|
141 |
+
DiffusionPipeline,
|
142 |
+
FluxLoraLoaderMixin,
|
143 |
+
FromSingleFileMixin,
|
144 |
+
TextualInversionLoaderMixin,
|
145 |
+
):
|
146 |
+
r"""
|
147 |
+
The Flux pipeline for text-to-image generation.
|
148 |
+
|
149 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
150 |
+
|
151 |
+
Args:
|
152 |
+
transformer ([`FluxTransformer2DModel`]):
|
153 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
154 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
155 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
156 |
+
vae ([`AutoencoderKL`]):
|
157 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
158 |
+
text_encoder ([`CLIPTextModel`]):
|
159 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
160 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
161 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
162 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
163 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
164 |
+
tokenizer (`CLIPTokenizer`):
|
165 |
+
Tokenizer of class
|
166 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
167 |
+
tokenizer_2 (`T5TokenizerFast`):
|
168 |
+
Second Tokenizer of class
|
169 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
170 |
+
"""
|
171 |
+
|
172 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
173 |
+
_optional_components = []
|
174 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
175 |
+
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
179 |
+
vae: AutoencoderKL,
|
180 |
+
text_encoder: CLIPTextModel,
|
181 |
+
tokenizer: CLIPTokenizer,
|
182 |
+
text_encoder_2: T5EncoderModel,
|
183 |
+
tokenizer_2: T5TokenizerFast,
|
184 |
+
transformer: FluxTransformer2DModel,
|
185 |
+
):
|
186 |
+
super().__init__()
|
187 |
+
|
188 |
+
self.register_modules(
|
189 |
+
vae=vae,
|
190 |
+
text_encoder=text_encoder,
|
191 |
+
text_encoder_2=text_encoder_2,
|
192 |
+
tokenizer=tokenizer,
|
193 |
+
tokenizer_2=tokenizer_2,
|
194 |
+
transformer=transformer,
|
195 |
+
scheduler=scheduler,
|
196 |
+
)
|
197 |
+
self.vae_scale_factor = (
|
198 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
199 |
+
)
|
200 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
201 |
+
self.tokenizer_max_length = (
|
202 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
203 |
+
)
|
204 |
+
self.default_sample_size = 64
|
205 |
+
|
206 |
+
def _get_t5_prompt_embeds(
|
207 |
+
self,
|
208 |
+
prompt: Union[str, List[str]] = None,
|
209 |
+
num_images_per_prompt: int = 1,
|
210 |
+
max_sequence_length: int = 512,
|
211 |
+
device: Optional[torch.device] = None,
|
212 |
+
dtype: Optional[torch.dtype] = None,
|
213 |
+
):
|
214 |
+
device = device or self._execution_device
|
215 |
+
dtype = dtype or self.text_encoder.dtype
|
216 |
+
|
217 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
218 |
+
batch_size = len(prompt)
|
219 |
+
|
220 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
221 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
|
222 |
+
|
223 |
+
text_inputs = self.tokenizer_2(
|
224 |
+
prompt,
|
225 |
+
padding="max_length",
|
226 |
+
max_length=max_sequence_length,
|
227 |
+
truncation=True,
|
228 |
+
return_length=False,
|
229 |
+
return_overflowing_tokens=False,
|
230 |
+
return_tensors="pt",
|
231 |
+
)
|
232 |
+
text_input_ids = text_inputs.input_ids
|
233 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
234 |
+
|
235 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
236 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
237 |
+
logger.warning(
|
238 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
239 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
240 |
+
)
|
241 |
+
|
242 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
243 |
+
|
244 |
+
dtype = self.text_encoder_2.dtype
|
245 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
246 |
+
|
247 |
+
_, seq_len, _ = prompt_embeds.shape
|
248 |
+
|
249 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
250 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
251 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
252 |
+
|
253 |
+
return prompt_embeds
|
254 |
+
|
255 |
+
def _get_clip_prompt_embeds(
|
256 |
+
self,
|
257 |
+
prompt: Union[str, List[str]],
|
258 |
+
num_images_per_prompt: int = 1,
|
259 |
+
device: Optional[torch.device] = None,
|
260 |
+
):
|
261 |
+
device = device or self._execution_device
|
262 |
+
|
263 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
264 |
+
batch_size = len(prompt)
|
265 |
+
|
266 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
267 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
268 |
+
|
269 |
+
text_inputs = self.tokenizer(
|
270 |
+
prompt,
|
271 |
+
padding="max_length",
|
272 |
+
max_length=self.tokenizer_max_length,
|
273 |
+
truncation=True,
|
274 |
+
return_overflowing_tokens=False,
|
275 |
+
return_length=False,
|
276 |
+
return_tensors="pt",
|
277 |
+
)
|
278 |
+
|
279 |
+
text_input_ids = text_inputs.input_ids
|
280 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
281 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
282 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
283 |
+
logger.warning(
|
284 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
285 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
286 |
+
)
|
287 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
288 |
+
|
289 |
+
# Use pooled output of CLIPTextModel
|
290 |
+
prompt_embeds = prompt_embeds.pooler_output
|
291 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
292 |
+
|
293 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
294 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
295 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
296 |
+
|
297 |
+
return prompt_embeds
|
298 |
+
|
299 |
+
def encode_prompt(
|
300 |
+
self,
|
301 |
+
prompt: Union[str, List[str]],
|
302 |
+
prompt_2: Union[str, List[str]],
|
303 |
+
device: Optional[torch.device] = None,
|
304 |
+
num_images_per_prompt: int = 1,
|
305 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
306 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
307 |
+
max_sequence_length: int = 512,
|
308 |
+
lora_scale: Optional[float] = None,
|
309 |
+
):
|
310 |
+
r"""
|
311 |
+
|
312 |
+
Args:
|
313 |
+
prompt (`str` or `List[str]`, *optional*):
|
314 |
+
prompt to be encoded
|
315 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
316 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
317 |
+
used in all text-encoders
|
318 |
+
device: (`torch.device`):
|
319 |
+
torch device
|
320 |
+
num_images_per_prompt (`int`):
|
321 |
+
number of images that should be generated per prompt
|
322 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
323 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
324 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
325 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
326 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
327 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
328 |
+
lora_scale (`float`, *optional*):
|
329 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
330 |
+
"""
|
331 |
+
device = device or self._execution_device
|
332 |
+
|
333 |
+
# set lora scale so that monkey patched LoRA
|
334 |
+
# function of text encoder can correctly access it
|
335 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
336 |
+
self._lora_scale = lora_scale
|
337 |
+
|
338 |
+
# dynamically adjust the LoRA scale
|
339 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
340 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
341 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
342 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
343 |
+
|
344 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
345 |
+
|
346 |
+
if prompt_embeds is None:
|
347 |
+
prompt_2 = prompt_2 or prompt
|
348 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
349 |
+
|
350 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
351 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
352 |
+
prompt=prompt,
|
353 |
+
device=device,
|
354 |
+
num_images_per_prompt=num_images_per_prompt,
|
355 |
+
)
|
356 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
357 |
+
prompt=prompt_2,
|
358 |
+
num_images_per_prompt=num_images_per_prompt,
|
359 |
+
max_sequence_length=max_sequence_length,
|
360 |
+
device=device,
|
361 |
+
)
|
362 |
+
|
363 |
+
if self.text_encoder is not None:
|
364 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
365 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
366 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
367 |
+
|
368 |
+
if self.text_encoder_2 is not None:
|
369 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
370 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
371 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
372 |
+
|
373 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
374 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
375 |
+
|
376 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
377 |
+
|
378 |
+
def check_inputs(
|
379 |
+
self,
|
380 |
+
prompt,
|
381 |
+
prompt_2,
|
382 |
+
height,
|
383 |
+
width,
|
384 |
+
prompt_embeds=None,
|
385 |
+
pooled_prompt_embeds=None,
|
386 |
+
callback_on_step_end_tensor_inputs=None,
|
387 |
+
max_sequence_length=None,
|
388 |
+
):
|
389 |
+
if height % 8 != 0 or width % 8 != 0:
|
390 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
391 |
+
|
392 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
393 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
394 |
+
):
|
395 |
+
raise ValueError(
|
396 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
397 |
+
)
|
398 |
+
|
399 |
+
if prompt is not None and prompt_embeds is not None:
|
400 |
+
raise ValueError(
|
401 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
402 |
+
" only forward one of the two."
|
403 |
+
)
|
404 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
405 |
+
raise ValueError(
|
406 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
407 |
+
" only forward one of the two."
|
408 |
+
)
|
409 |
+
elif prompt is None and prompt_embeds is None:
|
410 |
+
raise ValueError(
|
411 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
412 |
+
)
|
413 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
414 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
415 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
416 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
417 |
+
|
418 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
419 |
+
raise ValueError(
|
420 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
421 |
+
)
|
422 |
+
|
423 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
424 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
425 |
+
|
426 |
+
@staticmethod
|
427 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
428 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
429 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
430 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
431 |
+
|
432 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
433 |
+
|
434 |
+
latent_image_ids = latent_image_ids.reshape(
|
435 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
436 |
+
)
|
437 |
+
|
438 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
439 |
+
|
440 |
+
@staticmethod
|
441 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
442 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
443 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
444 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
445 |
+
|
446 |
+
return latents
|
447 |
+
|
448 |
+
@staticmethod
|
449 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
450 |
+
batch_size, num_patches, channels = latents.shape
|
451 |
+
|
452 |
+
height = height // vae_scale_factor
|
453 |
+
width = width // vae_scale_factor
|
454 |
+
|
455 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
456 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
457 |
+
|
458 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
459 |
+
|
460 |
+
return latents
|
461 |
+
|
462 |
+
def enable_vae_slicing(self):
|
463 |
+
r"""
|
464 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
465 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
466 |
+
"""
|
467 |
+
self.vae.enable_slicing()
|
468 |
+
|
469 |
+
def disable_vae_slicing(self):
|
470 |
+
r"""
|
471 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
472 |
+
computing decoding in one step.
|
473 |
+
"""
|
474 |
+
self.vae.disable_slicing()
|
475 |
+
|
476 |
+
def enable_vae_tiling(self):
|
477 |
+
r"""
|
478 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
479 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
480 |
+
processing larger images.
|
481 |
+
"""
|
482 |
+
self.vae.enable_tiling()
|
483 |
+
|
484 |
+
def disable_vae_tiling(self):
|
485 |
+
r"""
|
486 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
487 |
+
computing decoding in one step.
|
488 |
+
"""
|
489 |
+
self.vae.disable_tiling()
|
490 |
+
|
491 |
+
def prepare_latents(
|
492 |
+
self,
|
493 |
+
batch_size,
|
494 |
+
num_channels_latents,
|
495 |
+
height,
|
496 |
+
width,
|
497 |
+
dtype,
|
498 |
+
device,
|
499 |
+
generator,
|
500 |
+
latents=None,
|
501 |
+
):
|
502 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
503 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
504 |
+
|
505 |
+
shape = (batch_size, num_channels_latents, height, width)
|
506 |
+
|
507 |
+
if latents is not None:
|
508 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
509 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
510 |
+
|
511 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
512 |
+
raise ValueError(
|
513 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
514 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
515 |
+
)
|
516 |
+
|
517 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
518 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
519 |
+
|
520 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
521 |
+
|
522 |
+
return latents, latent_image_ids
|
523 |
+
|
524 |
+
@property
|
525 |
+
def guidance_scale(self):
|
526 |
+
return self._guidance_scale
|
527 |
+
|
528 |
+
@property
|
529 |
+
def joint_attention_kwargs(self):
|
530 |
+
return self._joint_attention_kwargs
|
531 |
+
|
532 |
+
@property
|
533 |
+
def num_timesteps(self):
|
534 |
+
return self._num_timesteps
|
535 |
+
|
536 |
+
@property
|
537 |
+
def interrupt(self):
|
538 |
+
return self._interrupt
|
539 |
+
|
540 |
+
@torch.no_grad()
|
541 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
542 |
+
def __call__(
|
543 |
+
self,
|
544 |
+
prompt: Union[str, List[str]] = None,
|
545 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
546 |
+
height: Optional[int] = None,
|
547 |
+
width: Optional[int] = None,
|
548 |
+
num_inference_steps: int = 28,
|
549 |
+
timesteps: List[int] = None,
|
550 |
+
guidance_scale: float = 3.5,
|
551 |
+
num_images_per_prompt: Optional[int] = 1,
|
552 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
553 |
+
latents: Optional[torch.FloatTensor] = None,
|
554 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
555 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
556 |
+
output_type: Optional[str] = "pil",
|
557 |
+
return_dict: bool = True,
|
558 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
559 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
560 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
561 |
+
max_sequence_length: int = 512,
|
562 |
+
ntk_factor: float = 10.0,
|
563 |
+
proportional_attention: bool = True
|
564 |
+
):
|
565 |
+
r"""
|
566 |
+
Function invoked when calling the pipeline for generation.
|
567 |
+
|
568 |
+
Args:
|
569 |
+
prompt (`str` or `List[str]`, *optional*):
|
570 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
571 |
+
instead.
|
572 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
573 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
574 |
+
will be used instead
|
575 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
576 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
577 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
578 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
579 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
580 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
581 |
+
expense of slower inference.
|
582 |
+
timesteps (`List[int]`, *optional*):
|
583 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
584 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
585 |
+
passed will be used. Must be in descending order.
|
586 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
587 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
588 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
589 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
590 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
591 |
+
usually at the expense of lower image quality.
|
592 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
593 |
+
The number of images to generate per prompt.
|
594 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
595 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
596 |
+
to make generation deterministic.
|
597 |
+
latents (`torch.FloatTensor`, *optional*):
|
598 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
599 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
600 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
601 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
602 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
603 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
604 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
605 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
606 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
607 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
608 |
+
The output format of the generate image. Choose between
|
609 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
610 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
611 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
612 |
+
joint_attention_kwargs (`dict`, *optional*):
|
613 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
614 |
+
`self.processor` in
|
615 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
616 |
+
callback_on_step_end (`Callable`, *optional*):
|
617 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
618 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
619 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
620 |
+
`callback_on_step_end_tensor_inputs`.
|
621 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
622 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
623 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
624 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
625 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
626 |
+
|
627 |
+
Examples:
|
628 |
+
|
629 |
+
Returns:
|
630 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
631 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
632 |
+
images.
|
633 |
+
"""
|
634 |
+
|
635 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
636 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
637 |
+
|
638 |
+
# 1. Check inputs. Raise error if not correct
|
639 |
+
self.check_inputs(
|
640 |
+
prompt,
|
641 |
+
prompt_2,
|
642 |
+
height,
|
643 |
+
width,
|
644 |
+
prompt_embeds=prompt_embeds,
|
645 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
646 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
647 |
+
max_sequence_length=max_sequence_length,
|
648 |
+
)
|
649 |
+
|
650 |
+
self._guidance_scale = guidance_scale
|
651 |
+
if joint_attention_kwargs is None:
|
652 |
+
joint_attention_kwargs = {'proportional_attention': proportional_attention}
|
653 |
+
else:
|
654 |
+
joint_attention_kwargs = {**joint_attention_kwargs, 'proportional_attention': proportional_attention}
|
655 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
656 |
+
self._interrupt = False
|
657 |
+
|
658 |
+
# 2. Define call parameters
|
659 |
+
if prompt is not None and isinstance(prompt, str):
|
660 |
+
batch_size = 1
|
661 |
+
elif prompt is not None and isinstance(prompt, list):
|
662 |
+
batch_size = len(prompt)
|
663 |
+
else:
|
664 |
+
batch_size = prompt_embeds.shape[0]
|
665 |
+
|
666 |
+
device = self._execution_device
|
667 |
+
|
668 |
+
lora_scale = (
|
669 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
670 |
+
)
|
671 |
+
(
|
672 |
+
prompt_embeds,
|
673 |
+
pooled_prompt_embeds,
|
674 |
+
text_ids,
|
675 |
+
) = self.encode_prompt(
|
676 |
+
prompt=prompt,
|
677 |
+
prompt_2=prompt_2,
|
678 |
+
prompt_embeds=prompt_embeds,
|
679 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
680 |
+
device=device,
|
681 |
+
num_images_per_prompt=num_images_per_prompt,
|
682 |
+
max_sequence_length=max_sequence_length,
|
683 |
+
lora_scale=lora_scale,
|
684 |
+
)
|
685 |
+
|
686 |
+
# 4. Prepare latent variables
|
687 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
688 |
+
latents, latent_image_ids = self.prepare_latents(
|
689 |
+
batch_size * num_images_per_prompt,
|
690 |
+
num_channels_latents,
|
691 |
+
height,
|
692 |
+
width,
|
693 |
+
prompt_embeds.dtype,
|
694 |
+
device,
|
695 |
+
generator,
|
696 |
+
latents,
|
697 |
+
)
|
698 |
+
|
699 |
+
# 5. Prepare timesteps
|
700 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
701 |
+
image_seq_len = latents.shape[1]
|
702 |
+
mu = calculate_shift(
|
703 |
+
image_seq_len,
|
704 |
+
self.scheduler.config.base_image_seq_len,
|
705 |
+
self.scheduler.config.max_image_seq_len,
|
706 |
+
self.scheduler.config.base_shift,
|
707 |
+
self.scheduler.config.max_shift,
|
708 |
+
)
|
709 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
710 |
+
self.scheduler,
|
711 |
+
num_inference_steps,
|
712 |
+
device,
|
713 |
+
timesteps,
|
714 |
+
sigmas,
|
715 |
+
mu=mu,
|
716 |
+
)
|
717 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
718 |
+
self._num_timesteps = len(timesteps)
|
719 |
+
|
720 |
+
# handle guidance
|
721 |
+
if self.transformer.config.guidance_embeds:
|
722 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
723 |
+
guidance = guidance.expand(latents.shape[0])
|
724 |
+
else:
|
725 |
+
guidance = None
|
726 |
+
|
727 |
+
# 6. Denoising loop
|
728 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
729 |
+
for i, t in enumerate(timesteps):
|
730 |
+
if self.interrupt:
|
731 |
+
continue
|
732 |
+
|
733 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
734 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
735 |
+
|
736 |
+
noise_pred = self.transformer(
|
737 |
+
hidden_states=latents,
|
738 |
+
timestep=timestep / 1000,
|
739 |
+
guidance=guidance,
|
740 |
+
pooled_projections=pooled_prompt_embeds,
|
741 |
+
encoder_hidden_states=prompt_embeds,
|
742 |
+
txt_ids=text_ids,
|
743 |
+
img_ids=latent_image_ids,
|
744 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
745 |
+
return_dict=False,
|
746 |
+
ntk_factor=ntk_factor
|
747 |
+
)[0]
|
748 |
+
|
749 |
+
# compute the previous noisy sample x_t -> x_t-1
|
750 |
+
latents_dtype = latents.dtype
|
751 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
752 |
+
|
753 |
+
if latents.dtype != latents_dtype:
|
754 |
+
#if torch.backends.mps.is_available():
|
755 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
756 |
+
latents = latents.to(latents_dtype)
|
757 |
+
|
758 |
+
if callback_on_step_end is not None:
|
759 |
+
callback_kwargs = {}
|
760 |
+
for k in callback_on_step_end_tensor_inputs:
|
761 |
+
callback_kwargs[k] = locals()[k]
|
762 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
763 |
+
|
764 |
+
latents = callback_outputs.pop("latents", latents)
|
765 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
766 |
+
|
767 |
+
# call the callback, if provided
|
768 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
769 |
+
progress_bar.update()
|
770 |
+
|
771 |
+
if XLA_AVAILABLE:
|
772 |
+
xm.mark_step()
|
773 |
+
|
774 |
+
if output_type == "latent":
|
775 |
+
image = latents
|
776 |
+
|
777 |
+
else:
|
778 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
779 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
780 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
781 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
782 |
+
|
783 |
+
# Offload all models
|
784 |
+
self.maybe_free_model_hooks()
|
785 |
+
|
786 |
+
if not return_dict:
|
787 |
+
return (image,)
|
788 |
+
|
789 |
+
return FluxPipelineOutput(images=image)
|
transformer_flux.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional, Tuple, Union, List
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
10 |
+
from diffusers.models.attention import FeedForward
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
Attention,
|
13 |
+
AttentionProcessor
|
14 |
+
)
|
15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
16 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
17 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
18 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
19 |
+
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, get_1d_rotary_pos_embed
|
20 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
21 |
+
from attention_processor import FluxAttnProcessor2_0
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
25 |
+
|
26 |
+
|
27 |
+
@maybe_allow_in_graph
|
28 |
+
class FluxSingleTransformerBlock(nn.Module):
|
29 |
+
r"""
|
30 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
31 |
+
|
32 |
+
Reference: https://arxiv.org/abs/2403.03206
|
33 |
+
|
34 |
+
Parameters:
|
35 |
+
dim (`int`): The number of channels in the input and output.
|
36 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
37 |
+
attention_head_dim (`int`): The number of channels in each head.
|
38 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
39 |
+
processing of `context` conditions.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
43 |
+
super().__init__()
|
44 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
45 |
+
|
46 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
47 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
48 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
49 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
50 |
+
|
51 |
+
processor = FluxAttnProcessor2_0()
|
52 |
+
self.attn = Attention(
|
53 |
+
query_dim=dim,
|
54 |
+
cross_attention_dim=None,
|
55 |
+
dim_head=attention_head_dim,
|
56 |
+
heads=num_attention_heads,
|
57 |
+
out_dim=dim,
|
58 |
+
bias=True,
|
59 |
+
processor=processor,
|
60 |
+
qk_norm="rms_norm",
|
61 |
+
eps=1e-6,
|
62 |
+
pre_only=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
def forward(
|
66 |
+
self,
|
67 |
+
hidden_states: torch.FloatTensor,
|
68 |
+
temb: torch.FloatTensor,
|
69 |
+
image_rotary_emb=None,
|
70 |
+
joint_attention_kwargs=None
|
71 |
+
):
|
72 |
+
residual = hidden_states
|
73 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
74 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
75 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
76 |
+
attn_output = self.attn(
|
77 |
+
hidden_states=norm_hidden_states,
|
78 |
+
image_rotary_emb=image_rotary_emb,
|
79 |
+
**joint_attention_kwargs,
|
80 |
+
)
|
81 |
+
|
82 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
83 |
+
gate = gate.unsqueeze(1)
|
84 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
85 |
+
hidden_states = residual + hidden_states
|
86 |
+
if hidden_states.dtype == torch.float16:
|
87 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
88 |
+
|
89 |
+
return hidden_states
|
90 |
+
|
91 |
+
|
92 |
+
@maybe_allow_in_graph
|
93 |
+
class FluxTransformerBlock(nn.Module):
|
94 |
+
r"""
|
95 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
96 |
+
|
97 |
+
Reference: https://arxiv.org/abs/2403.03206
|
98 |
+
|
99 |
+
Parameters:
|
100 |
+
dim (`int`): The number of channels in the input and output.
|
101 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
102 |
+
attention_head_dim (`int`): The number of channels in each head.
|
103 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
104 |
+
processing of `context` conditions.
|
105 |
+
"""
|
106 |
+
|
107 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self.norm1 = AdaLayerNormZero(dim)
|
111 |
+
|
112 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
113 |
+
|
114 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
115 |
+
processor = FluxAttnProcessor2_0()
|
116 |
+
else:
|
117 |
+
raise ValueError(
|
118 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
119 |
+
)
|
120 |
+
self.attn = Attention(
|
121 |
+
query_dim=dim,
|
122 |
+
cross_attention_dim=None,
|
123 |
+
added_kv_proj_dim=dim,
|
124 |
+
dim_head=attention_head_dim,
|
125 |
+
heads=num_attention_heads,
|
126 |
+
out_dim=dim,
|
127 |
+
context_pre_only=False,
|
128 |
+
bias=True,
|
129 |
+
processor=processor,
|
130 |
+
qk_norm=qk_norm,
|
131 |
+
eps=eps,
|
132 |
+
)
|
133 |
+
|
134 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
135 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
136 |
+
|
137 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
138 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
139 |
+
|
140 |
+
# let chunk size default to None
|
141 |
+
self._chunk_size = None
|
142 |
+
self._chunk_dim = 0
|
143 |
+
|
144 |
+
def forward(
|
145 |
+
self,
|
146 |
+
hidden_states: torch.FloatTensor,
|
147 |
+
encoder_hidden_states: torch.FloatTensor,
|
148 |
+
temb: torch.FloatTensor,
|
149 |
+
image_rotary_emb=None,
|
150 |
+
joint_attention_kwargs=None,
|
151 |
+
):
|
152 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
153 |
+
|
154 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
155 |
+
encoder_hidden_states, emb=temb
|
156 |
+
)
|
157 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
158 |
+
# Attention.
|
159 |
+
attn_output, context_attn_output = self.attn(
|
160 |
+
hidden_states=norm_hidden_states,
|
161 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
162 |
+
image_rotary_emb=image_rotary_emb,
|
163 |
+
**joint_attention_kwargs,
|
164 |
+
)
|
165 |
+
|
166 |
+
# Process attention outputs for the `hidden_states`.
|
167 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
168 |
+
hidden_states = hidden_states + attn_output
|
169 |
+
|
170 |
+
norm_hidden_states = self.norm2(hidden_states)
|
171 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
172 |
+
|
173 |
+
ff_output = self.ff(norm_hidden_states)
|
174 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
175 |
+
|
176 |
+
hidden_states = hidden_states + ff_output
|
177 |
+
|
178 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
179 |
+
|
180 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
181 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
182 |
+
|
183 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
184 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
185 |
+
|
186 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
187 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
188 |
+
if encoder_hidden_states.dtype == torch.float16:
|
189 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
190 |
+
|
191 |
+
return encoder_hidden_states, hidden_states
|
192 |
+
|
193 |
+
|
194 |
+
class FluxPosEmbed(nn.Module):
|
195 |
+
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
|
196 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
197 |
+
super().__init__()
|
198 |
+
self.theta = theta
|
199 |
+
self.axes_dim = axes_dim
|
200 |
+
|
201 |
+
def forward(self, ids: torch.Tensor, ntk_factor=1) -> torch.Tensor:
|
202 |
+
n_axes = ids.shape[-1]
|
203 |
+
cos_out = []
|
204 |
+
sin_out = []
|
205 |
+
pos = ids.float()
|
206 |
+
is_mps = ids.device.type == "mps"
|
207 |
+
freqs_dtype = torch.float32 if is_mps else torch.float64
|
208 |
+
for i in range(n_axes):
|
209 |
+
cos, sin = get_1d_rotary_pos_embed(
|
210 |
+
self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype,
|
211 |
+
ntk_factor=ntk_factor
|
212 |
+
)
|
213 |
+
cos_out.append(cos)
|
214 |
+
sin_out.append(sin)
|
215 |
+
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
|
216 |
+
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
|
217 |
+
return freqs_cos, freqs_sin
|
218 |
+
|
219 |
+
|
220 |
+
class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
221 |
+
"""
|
222 |
+
The Transformer model introduced in Flux.
|
223 |
+
|
224 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
225 |
+
|
226 |
+
Parameters:
|
227 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
228 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
229 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
230 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
231 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
232 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
233 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
234 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
235 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
236 |
+
"""
|
237 |
+
|
238 |
+
_supports_gradient_checkpointing = True
|
239 |
+
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
240 |
+
|
241 |
+
@register_to_config
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
patch_size: int = 1,
|
245 |
+
in_channels: int = 64,
|
246 |
+
num_layers: int = 19,
|
247 |
+
num_single_layers: int = 38,
|
248 |
+
attention_head_dim: int = 128,
|
249 |
+
num_attention_heads: int = 24,
|
250 |
+
joint_attention_dim: int = 4096,
|
251 |
+
pooled_projection_dim: int = 768,
|
252 |
+
guidance_embeds: bool = False,
|
253 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
254 |
+
):
|
255 |
+
super().__init__()
|
256 |
+
self.out_channels = in_channels
|
257 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
258 |
+
|
259 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
260 |
+
|
261 |
+
text_time_guidance_cls = (
|
262 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
263 |
+
)
|
264 |
+
self.time_text_embed = text_time_guidance_cls(
|
265 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
266 |
+
)
|
267 |
+
|
268 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
269 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
270 |
+
|
271 |
+
self.transformer_blocks = nn.ModuleList(
|
272 |
+
[
|
273 |
+
FluxTransformerBlock(
|
274 |
+
dim=self.inner_dim,
|
275 |
+
num_attention_heads=self.config.num_attention_heads,
|
276 |
+
attention_head_dim=self.config.attention_head_dim,
|
277 |
+
)
|
278 |
+
for i in range(self.config.num_layers)
|
279 |
+
]
|
280 |
+
)
|
281 |
+
|
282 |
+
self.single_transformer_blocks = nn.ModuleList(
|
283 |
+
[
|
284 |
+
FluxSingleTransformerBlock(
|
285 |
+
dim=self.inner_dim,
|
286 |
+
num_attention_heads=self.config.num_attention_heads,
|
287 |
+
attention_head_dim=self.config.attention_head_dim,
|
288 |
+
)
|
289 |
+
for i in range(self.config.num_single_layers)
|
290 |
+
]
|
291 |
+
)
|
292 |
+
|
293 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
294 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
295 |
+
|
296 |
+
self.gradient_checkpointing = False
|
297 |
+
|
298 |
+
@property
|
299 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
300 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
301 |
+
r"""
|
302 |
+
Returns:
|
303 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
304 |
+
indexed by its weight name.
|
305 |
+
"""
|
306 |
+
# set recursively
|
307 |
+
processors = {}
|
308 |
+
|
309 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
310 |
+
if hasattr(module, "get_processor"):
|
311 |
+
processors[f"{name}.processor"] = module.get_processor()
|
312 |
+
|
313 |
+
for sub_name, child in module.named_children():
|
314 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
315 |
+
|
316 |
+
return processors
|
317 |
+
|
318 |
+
for name, module in self.named_children():
|
319 |
+
fn_recursive_add_processors(name, module, processors)
|
320 |
+
|
321 |
+
return processors
|
322 |
+
|
323 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
324 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
325 |
+
r"""
|
326 |
+
Sets the attention processor to use to compute attention.
|
327 |
+
|
328 |
+
Parameters:
|
329 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
330 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
331 |
+
for **all** `Attention` layers.
|
332 |
+
|
333 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
334 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
335 |
+
|
336 |
+
"""
|
337 |
+
count = len(self.attn_processors.keys())
|
338 |
+
|
339 |
+
if isinstance(processor, dict) and len(processor) != count:
|
340 |
+
raise ValueError(
|
341 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
342 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
343 |
+
)
|
344 |
+
|
345 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
346 |
+
if hasattr(module, "set_processor"):
|
347 |
+
if not isinstance(processor, dict):
|
348 |
+
module.set_processor(processor)
|
349 |
+
else:
|
350 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
351 |
+
|
352 |
+
for sub_name, child in module.named_children():
|
353 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
354 |
+
|
355 |
+
for name, module in self.named_children():
|
356 |
+
fn_recursive_attn_processor(name, module, processor)
|
357 |
+
|
358 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
359 |
+
def unfuse_qkv_projections(self):
|
360 |
+
"""Disables the fused QKV projection if enabled.
|
361 |
+
|
362 |
+
<Tip warning={true}>
|
363 |
+
|
364 |
+
This API is 🧪 experimental.
|
365 |
+
|
366 |
+
</Tip>
|
367 |
+
|
368 |
+
"""
|
369 |
+
if self.original_attn_processors is not None:
|
370 |
+
self.set_attn_processor(self.original_attn_processors)
|
371 |
+
|
372 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
373 |
+
if hasattr(module, "gradient_checkpointing"):
|
374 |
+
module.gradient_checkpointing = value
|
375 |
+
|
376 |
+
def forward(
|
377 |
+
self,
|
378 |
+
hidden_states: torch.Tensor,
|
379 |
+
encoder_hidden_states: torch.Tensor = None,
|
380 |
+
pooled_projections: torch.Tensor = None,
|
381 |
+
timestep: torch.LongTensor = None,
|
382 |
+
img_ids: torch.Tensor = None,
|
383 |
+
txt_ids: torch.Tensor = None,
|
384 |
+
guidance: torch.Tensor = None,
|
385 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
386 |
+
controlnet_block_samples=None,
|
387 |
+
controlnet_single_block_samples=None,
|
388 |
+
return_dict: bool = True,
|
389 |
+
ntk_factor: float = 1,
|
390 |
+
controlnet_blocks_repeat: bool = False,
|
391 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
392 |
+
"""
|
393 |
+
The [`FluxTransformer2DModel`] forward method.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
397 |
+
Input `hidden_states`.
|
398 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
399 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
400 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
401 |
+
from the embeddings of input conditions.
|
402 |
+
timestep ( `torch.LongTensor`):
|
403 |
+
Used to indicate denoising step.
|
404 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
405 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
406 |
+
joint_attention_kwargs (`dict`, *optional*):
|
407 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
408 |
+
`self.processor` in
|
409 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
410 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
411 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
412 |
+
tuple.
|
413 |
+
|
414 |
+
Returns:
|
415 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
416 |
+
`tuple` where the first element is the sample tensor.
|
417 |
+
"""
|
418 |
+
|
419 |
+
if txt_ids.ndim == 3:
|
420 |
+
logger.warning(
|
421 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
422 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
423 |
+
)
|
424 |
+
txt_ids = txt_ids[0]
|
425 |
+
if img_ids.ndim == 3:
|
426 |
+
logger.warning(
|
427 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
428 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
429 |
+
)
|
430 |
+
img_ids = img_ids[0]
|
431 |
+
|
432 |
+
if joint_attention_kwargs is not None:
|
433 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
434 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
435 |
+
else:
|
436 |
+
lora_scale = 1.0
|
437 |
+
|
438 |
+
if USE_PEFT_BACKEND:
|
439 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
440 |
+
scale_lora_layers(self, lora_scale)
|
441 |
+
else:
|
442 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
443 |
+
logger.warning(
|
444 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
445 |
+
)
|
446 |
+
hidden_states = self.x_embedder(hidden_states)
|
447 |
+
|
448 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
449 |
+
if guidance is not None:
|
450 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
451 |
+
else:
|
452 |
+
guidance = None
|
453 |
+
temb = (
|
454 |
+
self.time_text_embed(timestep, pooled_projections)
|
455 |
+
if guidance is None
|
456 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
457 |
+
)
|
458 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
459 |
+
|
460 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
461 |
+
image_rotary_emb = self.pos_embed(ids, ntk_factor=ntk_factor)
|
462 |
+
|
463 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
464 |
+
if self.training and self.gradient_checkpointing:
|
465 |
+
|
466 |
+
def create_custom_forward(module, return_dict=None):
|
467 |
+
def custom_forward(*inputs):
|
468 |
+
if return_dict is not None:
|
469 |
+
return module(*inputs, return_dict=return_dict)
|
470 |
+
else:
|
471 |
+
return module(*inputs)
|
472 |
+
|
473 |
+
return custom_forward
|
474 |
+
|
475 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
476 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
477 |
+
create_custom_forward(block),
|
478 |
+
hidden_states,
|
479 |
+
encoder_hidden_states,
|
480 |
+
temb,
|
481 |
+
image_rotary_emb,
|
482 |
+
joint_attention_kwargs,
|
483 |
+
**ckpt_kwargs,
|
484 |
+
)
|
485 |
+
|
486 |
+
else:
|
487 |
+
encoder_hidden_states, hidden_states = block(
|
488 |
+
hidden_states=hidden_states,
|
489 |
+
encoder_hidden_states=encoder_hidden_states,
|
490 |
+
temb=temb,
|
491 |
+
image_rotary_emb=image_rotary_emb,
|
492 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
493 |
+
)
|
494 |
+
|
495 |
+
# controlnet residual
|
496 |
+
if controlnet_block_samples is not None:
|
497 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
498 |
+
interval_control = int(np.ceil(interval_control))
|
499 |
+
# For Xlabs ControlNet.
|
500 |
+
if controlnet_blocks_repeat:
|
501 |
+
hidden_states = (
|
502 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
503 |
+
)
|
504 |
+
else:
|
505 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
506 |
+
|
507 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
508 |
+
|
509 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
510 |
+
if self.training and self.gradient_checkpointing:
|
511 |
+
|
512 |
+
def create_custom_forward(module, return_dict=None):
|
513 |
+
def custom_forward(*inputs):
|
514 |
+
if return_dict is not None:
|
515 |
+
return module(*inputs, return_dict=return_dict)
|
516 |
+
else:
|
517 |
+
return module(*inputs)
|
518 |
+
|
519 |
+
return custom_forward
|
520 |
+
|
521 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
522 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
523 |
+
create_custom_forward(block),
|
524 |
+
hidden_states,
|
525 |
+
temb,
|
526 |
+
image_rotary_emb,
|
527 |
+
joint_attention_kwargs,
|
528 |
+
**ckpt_kwargs,
|
529 |
+
)
|
530 |
+
|
531 |
+
else:
|
532 |
+
hidden_states = block(
|
533 |
+
hidden_states=hidden_states,
|
534 |
+
temb=temb,
|
535 |
+
image_rotary_emb=image_rotary_emb,
|
536 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
537 |
+
)
|
538 |
+
|
539 |
+
# controlnet residual
|
540 |
+
if controlnet_single_block_samples is not None:
|
541 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
542 |
+
interval_control = int(np.ceil(interval_control))
|
543 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
544 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
545 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
546 |
+
)
|
547 |
+
|
548 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
549 |
+
|
550 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
551 |
+
output = self.proj_out(hidden_states)
|
552 |
+
|
553 |
+
if USE_PEFT_BACKEND:
|
554 |
+
# remove `lora_scale` from each PEFT layer
|
555 |
+
unscale_lora_layers(self, lora_scale)
|
556 |
+
|
557 |
+
if not return_dict:
|
558 |
+
return (output,)
|
559 |
+
|
560 |
+
return Transformer2DModelOutput(sample=output)
|