import torch import torch.nn as nn import torch.nn.functional as F import math from diffusers.models.attention_processor import Attention from typing import Optional from diffusers.models.embeddings import apply_rotary_emb class FluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self, train_seq_len=512 + 64 * 64): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.train_seq_len = train_seq_len def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, proportional_attention=False, ) -> torch.FloatTensor: batch_size, _, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q( encoder_hidden_states_query_proj ) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k( encoder_hidden_states_key_proj ) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if proportional_attention: attention_scale = math.sqrt( math.log(key.size(2), self.train_seq_len) / head_dim ) else: attention_scale = math.sqrt(1 / head_dim) hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states class FluxAttnAdaptationProcessor2_0(nn.Module): """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self, rank=16, dim=3072, to_out=False, train_seq_len=512 + 64 * 64): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.to_q_a = nn.Linear(dim, rank, bias=False) self.to_q_b = nn.Linear(rank, dim, bias=False) self.to_q_b.weight.data = torch.zeros_like(self.to_q_b.weight.data) self.to_k_a = nn.Linear(dim, rank, bias=False) self.to_k_b = nn.Linear(rank, dim, bias=False) self.to_k_b.weight.data = torch.zeros_like(self.to_k_b.weight.data) self.to_v_a = nn.Linear(dim, rank, bias=False) self.to_v_b = nn.Linear(rank, dim, bias=False) self.to_v_b.weight.data = torch.zeros_like(self.to_v_b.weight.data) if to_out: self.to_out_a = nn.Linear(dim, rank, bias=False) self.to_out_b = nn.Linear(rank, dim, bias=False) self.to_out_b.weight.data = torch.zeros_like(self.to_out_b.weight.data) self.train_seq_len = train_seq_len def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, proportional_attention=False, ) -> torch.FloatTensor: batch_size, _, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) use_adaptation = True # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) if use_adaptation: query += self.to_q_b(self.to_q_a(hidden_states)) key += self.to_k_b(self.to_k_a(hidden_states)) value += self.to_v_b(self.to_v_a(hidden_states)) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q( encoder_hidden_states_query_proj ) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k( encoder_hidden_states_key_proj ) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if proportional_attention: attention_scale = math.sqrt( math.log(key.size(2), self.train_seq_len) / head_dim ) else: attention_scale = math.sqrt(1 / head_dim) hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = ( ( attn.to_out[0](hidden_states) + self.to_out_b(self.to_out_a(hidden_states)) ) if use_adaptation else attn.to_out[0](hidden_states) ) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states