|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
from diffusers.models.attention_processor import Attention |
|
from typing import Optional |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
|
|
|
|
class FluxAttnProcessor2_0: |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__(self, train_seq_len=512 + 64 * 64): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError( |
|
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." |
|
) |
|
self.train_seq_len = train_seq_len |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
proportional_attention=False, |
|
) -> torch.FloatTensor: |
|
batch_size, _, _ = ( |
|
hidden_states.shape |
|
if encoder_hidden_states is None |
|
else encoder_hidden_states.shape |
|
) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q( |
|
encoder_hidden_states_query_proj |
|
) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k( |
|
encoder_hidden_states_key_proj |
|
) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
if proportional_attention: |
|
attention_scale = math.sqrt( |
|
math.log(key.size(2), self.train_seq_len) / head_dim |
|
) |
|
else: |
|
attention_scale = math.sqrt(1 / head_dim) |
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
batch_size, -1, attn.heads * head_dim |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
return hidden_states, encoder_hidden_states |
|
else: |
|
return hidden_states |
|
|
|
|
|
class FluxAttnAdaptationProcessor2_0(nn.Module): |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__(self, rank=16, dim=3072, to_out=False, train_seq_len=512 + 64 * 64): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError( |
|
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." |
|
) |
|
self.to_q_a = nn.Linear(dim, rank, bias=False) |
|
self.to_q_b = nn.Linear(rank, dim, bias=False) |
|
self.to_q_b.weight.data = torch.zeros_like(self.to_q_b.weight.data) |
|
self.to_k_a = nn.Linear(dim, rank, bias=False) |
|
self.to_k_b = nn.Linear(rank, dim, bias=False) |
|
self.to_k_b.weight.data = torch.zeros_like(self.to_k_b.weight.data) |
|
self.to_v_a = nn.Linear(dim, rank, bias=False) |
|
self.to_v_b = nn.Linear(rank, dim, bias=False) |
|
self.to_v_b.weight.data = torch.zeros_like(self.to_v_b.weight.data) |
|
if to_out: |
|
self.to_out_a = nn.Linear(dim, rank, bias=False) |
|
self.to_out_b = nn.Linear(rank, dim, bias=False) |
|
self.to_out_b.weight.data = torch.zeros_like(self.to_out_b.weight.data) |
|
self.train_seq_len = train_seq_len |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
proportional_attention=False, |
|
) -> torch.FloatTensor: |
|
batch_size, _, _ = ( |
|
hidden_states.shape |
|
if encoder_hidden_states is None |
|
else encoder_hidden_states.shape |
|
) |
|
|
|
use_adaptation = True |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
if use_adaptation: |
|
query += self.to_q_b(self.to_q_a(hidden_states)) |
|
key += self.to_k_b(self.to_k_a(hidden_states)) |
|
value += self.to_v_b(self.to_v_a(hidden_states)) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q( |
|
encoder_hidden_states_query_proj |
|
) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k( |
|
encoder_hidden_states_key_proj |
|
) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
if proportional_attention: |
|
attention_scale = math.sqrt( |
|
math.log(key.size(2), self.train_seq_len) / head_dim |
|
) |
|
else: |
|
attention_scale = math.sqrt(1 / head_dim) |
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
batch_size, -1, attn.heads * head_dim |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
|
|
hidden_states = ( |
|
( |
|
attn.to_out[0](hidden_states) |
|
+ self.to_out_b(self.to_out_a(hidden_states)) |
|
) |
|
if use_adaptation |
|
else attn.to_out[0](hidden_states) |
|
) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
return hidden_states, encoder_hidden_states |
|
else: |
|
return hidden_states |
|
|