import gradio as gr import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import label def create_initial_plot(grid_size): grid = np.zeros((grid_size, grid_size)) fig = plt.figure(figsize=(15, 6)) grid_ax = fig.add_subplot(121) graph_ax = fig.add_subplot(122) grid_ax.imshow(grid, cmap='Greys', alpha=0.3) grid_ax.set_title(f'Site Occupation Probability p = 0.00') graph_ax.plot([0], [0], '-b', label='Largest Cluster Size') graph_ax.set_xlabel('Occupation Probability p') graph_ax.set_ylabel('Spanning Cluster Size Ratio') graph_ax.set_title('Phase Transition in 2D Percolation') graph_ax.grid(True) graph_ax.set_xlim(0, 1) graph_ax.set_ylim(0, 1) # plt.tight_layout() return fig def get_largest_cluster_spanning_size(grid): labeled_array, num_features = label(grid) if num_features == 0: return np.zeros_like(grid), 0 sizes = [np.sum(labeled_array == i) for i in range(1, num_features + 1)] max_cluster_index = np.argmax(sizes) + 1 max_cluster_mask = labeled_array == max_cluster_index max_cluster_size = sizes[max_cluster_index - 1] perc_x = np.intersect1d(labeled_array[0,:],labeled_array[-1,:]) perc_x = perc_x[np.where(perc_x>0)] # perc_y = np.intersect1d(labeled_array[0,:],labeled_array[-1,:]) # perc_y = perc_y[np.where(perc_y>0)] if len(perc_x)>0:# or len(perc_y)>0: # spanning cond. return max_cluster_mask, max_cluster_size else: return max_cluster_mask, 0 def run_percolation_simulation(grid_size, num_samples=10): p_step = 0.02 fine_step = 0.01 p1 = np.arange(0, 0.56, p_step*2) p2 = np.arange(0.56, 0.60 + fine_step, fine_step) p3 = np.arange(0.60 + p_step, 0.98 + p_step, p_step) steps = np.concatenate((p1, p2, p3)) p_values = [] spanning_clusters = [] fig = plt.figure(figsize=(15, 6)) grid_ax = fig.add_subplot(121) graph_ax = fig.add_subplot(122) np.random.seed(42) for p in steps: total_spanning_cluster_size = 0 for _ in range(num_samples): grid = np.random.random((grid_size, grid_size)) < p largest_cluster_mask, spanning_cluster_size = get_largest_cluster_spanning_size(grid) total_spanning_cluster_size += spanning_cluster_size spanning_cluster_ratio = total_spanning_cluster_size / (num_samples * grid_size * grid_size) p_values.append(p) spanning_clusters.append(spanning_cluster_ratio) grid_ax.clear() graph_ax.clear() grid_ax.imshow(grid, cmap='Greys', alpha=0.3) grid_ax.imshow(largest_cluster_mask, cmap='Blues', alpha=0.7) grid_ax.set_title(f'Site Occupation Probability p = {p:.2f}') graph_ax.plot(p_values, spanning_clusters, '-b', label='Largest Cluster Size') graph_ax.set_xlabel('Occupation Probability p') graph_ax.set_ylabel('Spanning Cluster Size Ratio') graph_ax.set_title('Phase Transition in 2D Percolation') graph_ax.grid(True) graph_ax.set_xlim(0, 1) graph_ax.set_ylim(0, 1) # plt.tight_layout() yield fig with gr.Blocks() as demo: gr.Markdown("# 2D Site Percolation Simulation") gr.Markdown(""" This simulation shows the formation of clusters in a 2D percolation system as the occupation probability increases. Watch how the system undergoes a phase transition around p ≈ 0.593 (critical point). - Gray dots: Occupied sites - Blue region: Largest connected cluster - Spanning Cluster: A cluster is spanning from one side to another """) with gr.Row(): plot = gr.Plot(value=create_initial_plot(150)) with gr.Row(): grid_size = gr.Slider( minimum=20, maximum=200, step=10, value=150, label="Grid Size", info="Size of the simulation grid" ) with gr.Row(): start_btn = gr.Button("Start Simulation") start_btn.click( fn=run_percolation_simulation, inputs=[grid_size], outputs=plot, show_progress=False ) grid_size.change( fn=create_initial_plot, inputs=[grid_size], outputs=plot ) if __name__ == "__main__": demo.queue().launch( debug=True )