yuk068
Space with UI
69ddefc
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Path to model on the Hugging Face Hub
MODEL_NAME = "Yuk050/gemma-3-1b-text-to-sql-model"
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float32, # safer default for CPU Spaces
device_map="auto",
)
def generate_sql(schema: str, natural_language_query: str) -> str:
user_message = f"Given the following database schema:\n\n{schema}\n\nGenerate the SQL query for: {natural_language_query}"
messages = [{"role": "user", "content": user_message}]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
return response.strip()
iface = gr.Interface(
fn=generate_sql,
inputs=[
gr.Textbox(lines=10, label="Database Schema", placeholder="e.g., CREATE TABLE Employees (...)"),
gr.Textbox(lines=2, label="Natural Language Query", placeholder="e.g., Select all employees with salary > 50000")
],
outputs=gr.Textbox(lines=5, label="Generated SQL Query"),
title="Text-to-SQL with Gemma 3 1B",
description="Enter a database schema and natural language question. The model will generate the SQL."
)
iface.launch()