import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Path to model on the Hugging Face Hub MODEL_NAME = "Yuk050/gemma-3-1b-text-to-sql-model" # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float32, # safer default for CPU Spaces device_map="auto", ) def generate_sql(schema: str, natural_language_query: str) -> str: user_message = f"Given the following database schema:\n\n{schema}\n\nGenerate the SQL query for: {natural_language_query}" messages = [{"role": "user", "content": user_message}] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, eos_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True) return response.strip() iface = gr.Interface( fn=generate_sql, inputs=[ gr.Textbox(lines=10, label="Database Schema", placeholder="e.g., CREATE TABLE Employees (...)"), gr.Textbox(lines=2, label="Natural Language Query", placeholder="e.g., Select all employees with salary > 50000") ], outputs=gr.Textbox(lines=5, label="Generated SQL Query"), title="Text-to-SQL with Gemma 3 1B", description="Enter a database schema and natural language question. The model will generate the SQL." ) iface.launch()