File size: 36,553 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ab6d4
da48dbe
 
 
 
 
 
 
 
 
66ab6d4
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ab6d4
da48dbe
 
 
 
 
66ab6d4
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ab6d4
da48dbe
66ab6d4
 
da48dbe
 
66ab6d4
da48dbe
 
 
 
66ab6d4
da48dbe
66ab6d4
da48dbe
66ab6d4
 
 
 
 
 
 
 
 
da48dbe
66ab6d4
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4a
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4a
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4a
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import numpy as np
import cv2
import pymeshlab
import torch
import torchvision
import trimesh
import os
from termcolor import colored
import os.path as osp
import _pickle as cPickle
from scipy.spatial import cKDTree

from pytorch3d.structures import Meshes
import torch.nn.functional as F
import lib.smplx as smplx
from pytorch3d.renderer.mesh import rasterize_meshes
from PIL import Image, ImageFont, ImageDraw
from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency
import tinyobjloader

from lib.common.imutils import uncrop
from lib.common.render_utils import Pytorch3dRasterizer


class SMPLX:

    def __init__(self):

        self.current_dir = osp.join(osp.dirname(__file__), "../../data/smpl_related")

        self.smpl_verts_path = osp.join(self.current_dir, "smpl_data/smpl_verts.npy")
        self.smpl_faces_path = osp.join(self.current_dir, "smpl_data/smpl_faces.npy")
        self.smplx_verts_path = osp.join(self.current_dir, "smpl_data/smplx_verts.npy")
        self.smplx_faces_path = osp.join(self.current_dir, "smpl_data/smplx_faces.npy")
        self.cmap_vert_path = osp.join(self.current_dir, "smpl_data/smplx_cmap.npy")

        self.smplx_to_smplx_path = osp.join(self.current_dir, "smpl_data/smplx_to_smpl.pkl")

        self.smplx_eyeball_fid_path = osp.join(self.current_dir, "smpl_data/eyeball_fid.npy")
        self.smplx_fill_mouth_fid_path = osp.join(self.current_dir, "smpl_data/fill_mouth_fid.npy")
        self.smplx_flame_vid_path = osp.join(self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy")
        self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl")
        self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy")
        self.smplx_vertex_lmkid_path = osp.join(self.current_dir, "smpl_data/smplx_vertex_lmkid.npy")

        self.smplx_faces = np.load(self.smplx_faces_path)
        self.smplx_verts = np.load(self.smplx_verts_path)
        self.smpl_verts = np.load(self.smpl_verts_path)
        self.smpl_faces = np.load(self.smpl_faces_path)
        self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path)

        self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path)
        self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path)
        self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True)
        self.smplx_mano_vid = np.concatenate([self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]])
        self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True)
        self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)]

        # hands
        self.mano_vertex_mask = torch.zeros(self.smplx_verts.shape[0],).index_fill_(0, torch.tensor(self.smplx_mano_vid), 1.0)
        # face
        self.front_flame_vertex_mask = torch.zeros(self.smplx_verts.shape[0],).index_fill_(
            0, torch.tensor(self.smplx_front_flame_vid), 1.0)
        self.eyeball_vertex_mask = torch.zeros(self.smplx_verts.shape[0],).index_fill_(
            0, torch.tensor(self.smplx_faces[self.smplx_eyeball_fid_mask].flatten()), 1.0)

        self.smplx_to_smpl = cPickle.load(open(self.smplx_to_smplx_path, "rb"))

        self.model_dir = osp.join(self.current_dir, "models")
        self.tedra_dir = osp.join(self.current_dir, "../tedra_data")

        self.ghum_smpl_pairs = torch.tensor([
            (0, 24),
            (2, 26),
            (5, 25),
            (7, 28),
            (8, 27),
            (11, 16),
            (12, 17),
            (13, 18),
            (14, 19),
            (15, 20),
            (16, 21),
            (17, 39),
            (18, 44),
            (19, 36),
            (20, 41),
            (21, 35),
            (22, 40),
            (23, 1),
            (24, 2),
            (25, 4),
            (26, 5),
            (27, 7),
            (28, 8),
            (29, 31),
            (30, 34),
            (31, 29),
            (32, 32),
        ]).long()

        # smpl-smplx correspondence
        self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73]
        self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68]
        self.smpl_joint_ids_45 = (np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist())

        self.extra_joint_ids = (
            np.array([
                61,
                72,
                66,
                69,
                58,
                68,
                57,
                56,
                64,
                59,
                67,
                75,
                70,
                65,
                60,
                61,
                63,
                62,
                76,
                71,
                72,
                74,
                73,
            ]) + 68)

        self.smpl_joint_ids_45_pixie = (np.arange(22).tolist() + self.extra_joint_ids.tolist())

    def cmap_smpl_vids(self, type):

        # smplx_to_smpl.pkl
        # KEYS:
        # closest_faces -   [6890, 3] with smplx vert_idx
        # bc            -   [6890, 3] with barycentric weights

        cmap_smplx = torch.as_tensor(np.load(self.cmap_vert_path)).float()

        if type == "smplx":
            return cmap_smplx

        elif type == "smpl":
            bc = torch.as_tensor(self.smplx_to_smpl["bc"].astype(np.float32))
            closest_faces = self.smplx_to_smpl["closest_faces"].astype(np.int32)
            cmap_smpl = torch.einsum("bij, bi->bj", cmap_smplx[closest_faces], bc)
            return cmap_smpl


model_init_params = dict(
    gender="male",
    model_type="smplx",
    model_path=SMPLX().model_dir,
    create_global_orient=False,
    create_body_pose=False,
    create_betas=False,
    create_left_hand_pose=False,
    create_right_hand_pose=False,
    create_expression=False,
    create_jaw_pose=False,
    create_leye_pose=False,
    create_reye_pose=False,
    create_transl=False,
    num_pca_comps=12,
)


def get_smpl_model(model_type, gender):
    return smplx.create(**model_init_params)


def load_fit_body(fitted_path, scale, smpl_type="smplx", smpl_gender="neutral", noise_dict=None):

    param = np.load(fitted_path, allow_pickle=True)
    for key in param.keys():
        param[key] = torch.as_tensor(param[key])

    smpl_model = get_smpl_model(smpl_type, smpl_gender)
    model_forward_params = dict(
        betas=param["betas"],
        global_orient=param["global_orient"],
        body_pose=param["body_pose"],
        left_hand_pose=param["left_hand_pose"],
        right_hand_pose=param["right_hand_pose"],
        jaw_pose=param["jaw_pose"],
        leye_pose=param["leye_pose"],
        reye_pose=param["reye_pose"],
        expression=param["expression"],
        return_verts=True,
    )

    if noise_dict is not None:
        model_forward_params.update(noise_dict)

    smpl_out = smpl_model(**model_forward_params)

    smpl_verts = ((smpl_out.vertices[0] * param["scale"] + param["translation"]) * scale).detach()
    smpl_joints = ((smpl_out.joints[0] * param["scale"] + param["translation"]) * scale).detach()
    smpl_mesh = trimesh.Trimesh(smpl_verts, smpl_model.faces, process=False, maintain_order=True)

    return smpl_mesh, smpl_joints


def create_grid_points_from_xyz_bounds(bound, res):

    min_x, max_x, min_y, max_y, min_z, max_z = bound
    x = torch.linspace(min_x, max_x, res)
    y = torch.linspace(min_y, max_y, res)
    z = torch.linspace(min_z, max_z, res)
    X, Y, Z = torch.meshgrid(x, y, z, indexing='ij')

    return torch.stack([X, Y, Z], dim=-1)


def create_grid_points_from_xy_bounds(bound, res):

    min_x, max_x, min_y, max_y = bound
    x = torch.linspace(min_x, max_x, res)
    y = torch.linspace(min_y, max_y, res)
    X, Y = torch.meshgrid(x, y, indexing='ij')

    return torch.stack([X, Y], dim=-1)


def apply_face_mask(mesh, face_mask):

    mesh.update_faces(face_mask)
    mesh.remove_unreferenced_vertices()

    return mesh


def apply_vertex_mask(mesh, vertex_mask):

    faces_mask = vertex_mask[mesh.faces].any(dim=1)
    mesh = apply_face_mask(mesh, faces_mask)

    return mesh


def apply_vertex_face_mask(mesh, vertex_mask, face_mask):

    faces_mask = vertex_mask[mesh.faces].any(dim=1) * torch.tensor(face_mask)
    mesh.update_faces(faces_mask)
    mesh.remove_unreferenced_vertices()

    return mesh


def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True):

    smpl_tree = cKDTree(smpl_obj.vertices)
    SMPL_container = SMPLX()

    from lib.dataset.PointFeat import PointFeat

    part_extractor = PointFeat(
        torch.tensor(part_mesh.vertices).unsqueeze(0).to(device),
        torch.tensor(part_mesh.faces).unsqueeze(0).to(device))

    (part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device))

    remove_mask = part_dist < thres

    if region == "hand":
        _, idx = smpl_tree.query(full_mesh.vertices, k=1)
        full_lmkid = SMPL_container.smplx_vertex_lmkid[idx]
        remove_mask = torch.logical_and(remove_mask, torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0))

    elif region == "face":
        _, idx = smpl_tree.query(full_mesh.vertices, k=5)
        face_space_mask = torch.isin(torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid))
        remove_mask = torch.logical_and(remove_mask, face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0))

    BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1)
    full_mesh.update_faces(BNI_part_mask.detach().cpu())
    full_mesh.remove_unreferenced_vertices()

    if clean:
        full_mesh = clean_floats(full_mesh)

    return full_mesh


def cross(triangles):
    """
    Returns the cross product of two edges from input triangles
    Parameters
    --------------
    triangles: (n, 3, 3) float
      Vertices of triangles
    Returns
    --------------
    crosses : (n, 3) float
      Cross product of two edge vectors
    """
    vectors = np.diff(triangles, axis=1)
    crosses = np.cross(vectors[:, 0], vectors[:, 1])
    return crosses


def tri_area(triangles=None, crosses=None, sum=False):
    """
    Calculates the sum area of input triangles
    Parameters
    ----------
    triangles : (n, 3, 3) float
      Vertices of triangles
    crosses : (n, 3) float or None
      As a speedup don't re- compute cross products
    sum : bool
      Return summed area or individual triangle area
    Returns
    ----------
    area : (n,) float or float
      Individual or summed area depending on `sum` argument
    """
    if crosses is None:
        crosses = cross(triangles)
    area = (np.sum(crosses**2, axis=1)**.5) * .5
    if sum:
        return np.sum(area)
    return area


def sample_surface(triangles, count, area=None):
    """
    Sample the surface of a mesh, returning the specified
    number of points
    For individual triangle sampling uses this method:
    http://mathworld.wolfram.com/TrianglePointPicking.html
    Parameters
    ---------
    triangles : (n, 3, 3) float
      Vertices of triangles
    count : int
      Number of points to return
    Returns
    ---------
    samples : (count, 3) float
      Points in space on the surface of mesh
    face_index : (count,) int
      Indices of faces for each sampled point
    """

    # len(mesh.faces) float, array of the areas
    # of each face of the mesh
    if area is None:
        area = tri_area(triangles)

    # total area (float)
    area_sum = np.sum(area)
    # cumulative area (len(mesh.faces))
    area_cum = np.cumsum(area)
    face_pick = np.random.random(count) * area_sum
    face_index = np.searchsorted(area_cum, face_pick)

    # pull triangles into the form of an origin + 2 vectors
    tri_origins = triangles[:, 0]
    tri_vectors = triangles[:, 1:].copy()
    tri_vectors -= np.tile(tri_origins, (1, 2)).reshape((-1, 2, 3))

    # pull the vectors for the faces we are going to sample from
    tri_origins = tri_origins[face_index]
    tri_vectors = tri_vectors[face_index]

    # randomly generate two 0-1 scalar components to multiply edge vectors by
    random_lengths = np.random.random((len(tri_vectors), 2, 1))

    # points will be distributed on a quadrilateral if we use 2 0-1 samples
    # if the two scalar components sum less than 1.0 the point will be
    # inside the triangle, so we find vectors longer than 1.0 and
    # transform them to be inside the triangle
    random_test = random_lengths.sum(axis=1).reshape(-1) > 1.0
    random_lengths[random_test] -= 1.0
    random_lengths = np.abs(random_lengths)

    # multiply triangle edge vectors by the random lengths and sum
    sample_vector = (tri_vectors * random_lengths).sum(axis=1)

    # finally, offset by the origin to generate
    # (n,3) points in space on the triangle
    samples = torch.tensor(sample_vector + tri_origins).float()

    return samples, face_index


def obj_loader(path, with_uv=True):
    # Create reader.
    reader = tinyobjloader.ObjReader()

    # Load .obj(and .mtl) using default configuration
    ret = reader.ParseFromFile(path)

    # note here for wavefront obj, #v might not equal to #vt, same as #vn.
    attrib = reader.GetAttrib()
    v = np.array(attrib.vertices).reshape(-1, 3)
    vt = np.array(attrib.texcoords).reshape(-1, 2)

    shapes = reader.GetShapes()
    tri = shapes[0].mesh.numpy_indices().reshape(-1, 9)
    f_v = tri[:, [0, 3, 6]]
    f_vt = tri[:, [2, 5, 8]]

    if with_uv:
        face_uvs = vt[f_vt].mean(axis=1)  #[m, 2]
        vert_uvs = np.zeros((v.shape[0], 2), dtype=np.float32)  #[n, 2]
        vert_uvs[f_v.reshape(-1)] = vt[f_vt.reshape(-1)]

        return v, f_v, vert_uvs, face_uvs
    else:
        return v, f_v


class HoppeMesh:

    def __init__(self, verts, faces, uvs=None, texture=None):
        """
        The HoppeSDF calculates signed distance towards a predefined oriented point cloud
        http://hhoppe.com/recon.pdf
        For clean and high-resolution pcl data, this is the fastest and accurate approximation of sdf
        """

        # self.device = torch.device("cuda:0")
        mesh = trimesh.Trimesh(verts, faces, process=False, maintains_order=True)
        self.verts = torch.tensor(verts).float()
        self.faces = torch.tensor(faces).long()
        self.vert_normals = torch.tensor(mesh.vertex_normals).float()

        if (uvs is not None) and (texture is not None):
            self.vertex_colors = trimesh.visual.color.uv_to_color(uvs, texture)
            self.face_normals = torch.tensor(mesh.face_normals).float()

    def get_colors(self, points, faces):
        """
        Get colors of surface points from texture image through 
        barycentric interpolation.
        - points: [n, 3]
        - return: [n, 4] rgba
        """
        triangles = self.verts[faces]  #[n, 3, 3]
        barycentric = trimesh.triangles.points_to_barycentric(triangles, points)  #[n, 3]
        vert_colors = self.vertex_colors[faces]  #[n, 3, 4]
        point_colors = torch.tensor((barycentric[:, :, None] * vert_colors).sum(axis=1)).float()
        return point_colors

    def triangles(self):
        return self.verts[self.faces].numpy()  #[n, 3, 3]


def tensor2variable(tensor, device):
    return tensor.requires_grad_(True).to(device)


class GMoF(torch.nn.Module):

    def __init__(self, rho=1):
        super(GMoF, self).__init__()
        self.rho = rho

    def extra_repr(self):
        return "rho = {}".format(self.rho)

    def forward(self, residual):
        dist = torch.div(residual, residual + self.rho**2)
        return self.rho**2 * dist


def mesh_edge_loss(meshes, target_length: float = 0.0):
    """
    Computes mesh edge length regularization loss averaged across all meshes
    in a batch. Each mesh contributes equally to the final loss, regardless of
    the number of edges per mesh in the batch by weighting each mesh with the
    inverse number of edges. For example, if mesh 3 (out of N) has only E=4
    edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to
    contribute to the final loss.

    Args:
        meshes: Meshes object with a batch of meshes.
        target_length: Resting value for the edge length.

    Returns:
        loss: Average loss across the batch. Returns 0 if meshes contains
        no meshes or all empty meshes.
    """
    if meshes.isempty():
        return torch.tensor([0.0], dtype=torch.float32, device=meshes.device, requires_grad=True)

    N = len(meshes)
    edges_packed = meshes.edges_packed()  # (sum(E_n), 3)
    verts_packed = meshes.verts_packed()  # (sum(V_n), 3)
    edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx()  # (sum(E_n), )
    num_edges_per_mesh = meshes.num_edges_per_mesh()  # N

    # Determine the weight for each edge based on the number of edges in the
    # mesh it corresponds to.
    # TODO (nikhilar) Find a faster way of computing the weights for each edge
    # as this is currently a bottleneck for meshes with a large number of faces.
    weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx)
    weights = 1.0 / weights.float()

    verts_edges = verts_packed[edges_packed]
    v0, v1 = verts_edges.unbind(1)
    loss = ((v0 - v1).norm(dim=1, p=2) - target_length)**2.0
    loss_vertex = loss * weights
    # loss_outlier = torch.topk(loss, 100)[0].mean()
    # loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N
    loss_all = loss_vertex.sum() / N

    return loss_all


def remesh(obj, obj_path):

    obj.export(obj_path)
    ms = pymeshlab.MeshSet()
    ms.load_new_mesh(obj_path)
    # ms.meshing_decimation_quadric_edge_collapse(targetfacenum=100000)
    ms.meshing_isotropic_explicit_remeshing(targetlen=pymeshlab.Percentage(0.5), adaptive=True)
    ms.apply_coord_laplacian_smoothing()
    ms.save_current_mesh(obj_path[:-4] + "_remesh.obj")
    polished_mesh = trimesh.load_mesh(obj_path[:-4] + "_remesh.obj")

    return polished_mesh


def poisson_remesh(obj_path):

    ms = pymeshlab.MeshSet()
    ms.load_new_mesh(obj_path)
    ms.meshing_decimation_quadric_edge_collapse(targetfacenum=50000)
    # ms.apply_coord_laplacian_smoothing()
    ms.save_current_mesh(obj_path)
    # ms.save_current_mesh(obj_path.replace(".obj", ".ply"))
    polished_mesh = trimesh.load_mesh(obj_path)

    return polished_mesh


def poisson(mesh, obj_path, depth=10):

    from pypoisson import poisson_reconstruction
    faces, vertices = poisson_reconstruction(mesh.vertices, mesh.vertex_normals, depth=depth)

    new_meshes = trimesh.Trimesh(vertices, faces)
    new_mesh_lst = new_meshes.split(only_watertight=False)
    comp_num = [new_mesh.vertices.shape[0] for new_mesh in new_mesh_lst]
    final_mesh = new_mesh_lst[comp_num.index(max(comp_num))]
    final_mesh.export(obj_path)

    final_mesh = poisson_remesh(obj_path)

    return final_mesh


def get_mask(tensor, dim):

    mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0
    mask = mask.type_as(tensor)

    return mask


def blend_rgb_norm(norms, data):

    # norms [N, 3, res, res]

    masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1)
    norm_mask = F.interpolate(
        torch.cat([norms, masks], dim=1).detach().cpu(),
        size=data["uncrop_param"]["box_shape"],
        mode="bilinear",
        align_corners=False).permute(0, 2, 3, 1).numpy()
    final = data["img_raw"]

    for idx in range(len(norms)):

        norm_pred = (norm_mask[idx, :, :, :3] + 1.0) * 255.0 / 2.0
        mask_pred = np.repeat(norm_mask[idx, :, :, 3:4], 3, axis=-1)

        norm_ori = unwrap(norm_pred, data["uncrop_param"], idx)
        mask_ori = unwrap(mask_pred, data["uncrop_param"], idx)

        final = final * (1.0 - mask_ori) + norm_ori * mask_ori

    return final.astype(np.uint8)


def unwrap(image, uncrop_param, idx):

    img_uncrop = uncrop(
        image,
        uncrop_param["center"][idx],
        uncrop_param["scale"][idx],
        uncrop_param["crop_shape"],
    )

    img_orig = cv2.warpAffine(
        img_uncrop,
        np.linalg.inv(uncrop_param["M"])[:2, :],
        uncrop_param["ori_shape"][::-1],
        flags=cv2.INTER_CUBIC,
    )

    return img_orig


# Losses to smooth / regularize the mesh shape
def update_mesh_shape_prior_losses(mesh, losses):

    # and (b) the edge length of the predicted mesh
    losses["edge"]["value"] = mesh_edge_loss(mesh)
    # mesh normal consistency
    losses["nc"]["value"] = mesh_normal_consistency(mesh)
    # mesh laplacian smoothing
    losses["laplacian"]["value"] = mesh_laplacian_smoothing(mesh, method="uniform")


def rename(old_dict, old_name, new_name):
    new_dict = {}
    for key, value in zip(old_dict.keys(), old_dict.values()):
        new_key = key if key != old_name else new_name
        new_dict[new_key] = old_dict[key]
    return new_dict


def load_checkpoint(model, cfg):

    model_dict = model.state_dict()
    main_dict = {}
    normal_dict = {}

    device = torch.device(f"cuda:{cfg['test_gpus'][0]}")

    if os.path.exists(cfg.resume_path) and cfg.resume_path.endswith("ckpt"):
        main_dict = torch.load(cfg.resume_path, map_location=device)["state_dict"]

        main_dict = {
            k: v for k, v in main_dict.items() if k in model_dict and v.shape == model_dict[k].shape and
            ("reconEngine" not in k) and ("normal_filter" not in k) and ("voxelization" not in k)
        }
        print(colored(f"Resume MLP weights from {cfg.resume_path}", "green"))

    if os.path.exists(cfg.normal_path) and cfg.normal_path.endswith("ckpt"):
        normal_dict = torch.load(cfg.normal_path, map_location=device)["state_dict"]

        for key in normal_dict.keys():
            normal_dict = rename(normal_dict, key, key.replace("netG", "netG.normal_filter"))

        normal_dict = {k: v for k, v in normal_dict.items() if k in model_dict and v.shape == model_dict[k].shape}
        print(colored(f"Resume normal model from {cfg.normal_path}", "green"))

    model_dict.update(main_dict)
    model_dict.update(normal_dict)
    model.load_state_dict(model_dict)

    model.netG = model.netG.to(device)
    model.reconEngine = model.reconEngine.to(device)

    model.netG.training = False
    model.netG.eval()

    del main_dict
    del normal_dict
    del model_dict

    torch.cuda.empty_cache()

    return model


def read_smpl_constants(folder):
    """Load smpl vertex code"""
    smpl_vtx_std = np.loadtxt(os.path.join(folder, "vertices.txt"))
    min_x = np.min(smpl_vtx_std[:, 0])
    max_x = np.max(smpl_vtx_std[:, 0])
    min_y = np.min(smpl_vtx_std[:, 1])
    max_y = np.max(smpl_vtx_std[:, 1])
    min_z = np.min(smpl_vtx_std[:, 2])
    max_z = np.max(smpl_vtx_std[:, 2])

    smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x)
    smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y)
    smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z)
    smpl_vertex_code = np.float32(np.copy(smpl_vtx_std))
    """Load smpl faces & tetrahedrons"""
    smpl_faces = np.loadtxt(os.path.join(folder, "faces.txt"), dtype=np.int32) - 1
    smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] + smpl_vertex_code[smpl_faces[:, 1]] +
                      smpl_vertex_code[smpl_faces[:, 2]]) / 3.0
    smpl_tetras = (np.loadtxt(os.path.join(folder, "tetrahedrons.txt"), dtype=np.int32) - 1)

    return_dict = {
        "smpl_vertex_code": torch.tensor(smpl_vertex_code),
        "smpl_face_code": torch.tensor(smpl_face_code),
        "smpl_faces": torch.tensor(smpl_faces),
        "smpl_tetras": torch.tensor(smpl_tetras)
    }

    return return_dict


def feat_select(feat, select):

    # feat [B, featx2, N]
    # select [B, 1, N]
    # return [B, feat, N]

    dim = feat.shape[1] // 2
    idx = torch.tile((1 - select), (1, dim, 1)) * dim + torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select)
    feat_select = torch.gather(feat, 1, idx.long())

    return feat_select


def get_visibility(xy, z, faces, img_res=2**12, blur_radius=0.0, faces_per_pixel=1):
    """get the visibility of vertices

    Args:
        xy (torch.tensor): [B, N,2]
        z (torch.tensor): [B, N,1]
        faces (torch.tensor): [B, N,3]
        size (int): resolution of rendered image
    """

    if xy.ndimension() == 2:
        xy = xy.unsqueeze(0)
        z = z.unsqueeze(0)
        faces = faces.unsqueeze(0)

    xyz = (torch.cat((xy, -z), dim=-1) + 1.) / 2.
    N_body = xyz.shape[0]
    faces = faces.long().repeat(N_body, 1, 1)
    vis_mask = torch.zeros(size=(N_body, z.shape[1]))
    rasterizer = Pytorch3dRasterizer(image_size=img_res)

    meshes_screen = Meshes(verts=xyz, faces=faces)
    pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
        meshes_screen,
        image_size=rasterizer.raster_settings.image_size,
        blur_radius=blur_radius,
        faces_per_pixel=faces_per_pixel,
        bin_size=rasterizer.raster_settings.bin_size,
        max_faces_per_bin=rasterizer.raster_settings.max_faces_per_bin,
        perspective_correct=rasterizer.raster_settings.perspective_correct,
        cull_backfaces=rasterizer.raster_settings.cull_backfaces,
    )

    pix_to_face = pix_to_face.detach().cpu().view(N_body, -1)
    faces = faces.detach().cpu()

    for idx in range(N_body):
        Num_faces = len(faces[idx])
        vis_vertices_id = torch.unique(faces[idx][torch.unique(pix_to_face[idx][pix_to_face[idx] != -1]) - Num_faces * idx, :])
        vis_mask[idx, vis_vertices_id] = 1.0

    # print("------------------------\n")
    # print(f"keep points : {vis_mask.sum()/len(vis_mask)}")

    return vis_mask


def barycentric_coordinates_of_projection(points, vertices):
    """https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py"""
    """Given a point, gives projected coords of that point to a triangle
    in barycentric coordinates.
    See
        **Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05
        at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf
    
    :param p: point to project. [B, 3]
    :param v0: first vertex of triangles. [B, 3]
    :returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v``
            vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN``
    """
    # (p, q, u, v)
    v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2]

    u = v1 - v0
    v = v2 - v0
    n = torch.cross(u, v)
    sb = torch.sum(n * n, dim=1)
    # If the triangle edges are collinear, cross-product is zero,
    # which makes "s" 0, which gives us divide by zero. So we
    # make the arbitrary choice to set s to epsv (=numpy.spacing(1)),
    # the closest thing to zero
    sb[sb == 0] = 1e-6
    oneOver4ASquared = 1.0 / sb
    w = points - v0
    b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared
    b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared
    weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1)
    # check barycenric weights
    # p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3]
    return weights


def orthogonal(points, calibrations, transforms=None):
    """
    Compute the orthogonal projections of 3D points into the image plane by given projection matrix
    :param points: [B, 3, N] Tensor of 3D points
    :param calibrations: [B, 3, 4] Tensor of projection matrix
    :param transforms: [B, 2, 3] Tensor of image transform matrix
    :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane
    """
    rot = calibrations[:, :3, :3]
    trans = calibrations[:, :3, 3:4]
    pts = torch.baddbmm(trans, rot, points)  # [B, 3, N]
    if transforms is not None:
        scale = transforms[:2, :2]
        shift = transforms[:2, 2:3]
        pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :])
    return pts


def projection(points, calib):
    if torch.is_tensor(points):
        calib = torch.as_tensor(calib) if not torch.is_tensor(calib) else calib
        return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3]
    else:
        return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3]


def load_calib(calib_path):
    calib_data = np.loadtxt(calib_path, dtype=float)
    extrinsic = calib_data[:4, :4]
    intrinsic = calib_data[4:8, :4]
    calib_mat = np.matmul(intrinsic, extrinsic)
    calib_mat = torch.from_numpy(calib_mat).float()
    return calib_mat


def normalize_v3(arr):
    """ Normalize a numpy array of 3 component vectors shape=(n,3) """
    lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2)
    eps = 0.00000001
    lens[lens < eps] = eps
    arr[:, 0] /= lens
    arr[:, 1] /= lens
    arr[:, 2] /= lens
    return arr


def compute_normal(vertices, faces):
    # Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal
    vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype)
    # Create an indexed view into the vertex array using the array of three indices for triangles
    tris = vertices[faces]
    # Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle
    face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0])
    # n is now an array of normals per triangle. The length of each normal is dependent the vertices,
    # we need to normalize these, so that our next step weights each normal equally.
    normalize_v3(face_norms)
    # now we have a normalized array of normals, one per triangle, i.e., per triangle normals.
    # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle,
    # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards.
    # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array
    vert_norms[faces[:, 0]] += face_norms
    vert_norms[faces[:, 1]] += face_norms
    vert_norms[faces[:, 2]] += face_norms
    normalize_v3(vert_norms)

    return vert_norms, face_norms


def face_vertices(vertices, faces):
    """
    :param vertices: [batch size, number of vertices, 3]
    :param faces: [batch size, number of faces, 3]
    :return: [batch size, number of faces, 3, 3]
    """

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
    vertices = vertices.reshape((bs * nv, vertices.shape[-1]))

    return vertices[faces.long()]


def compute_normal_batch(vertices, faces):

    if faces.shape[0] != vertices.shape[0]:
        faces = faces.repeat(vertices.shape[0], 1, 1)

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]

    vert_norm = torch.zeros(bs * nv, 3).type_as(vertices)
    tris = face_vertices(vertices, faces)
    face_norm = F.normalize(
        torch.cross(tris[:, :, 1] - tris[:, :, 0], tris[:, :, 2] - tris[:, :, 0]),
        dim=-1,
    )

    faces = (faces + (torch.arange(bs).type_as(faces) * nv)[:, None, None]).view(-1, 3)

    vert_norm[faces[:, 0]] += face_norm.view(-1, 3)
    vert_norm[faces[:, 1]] += face_norm.view(-1, 3)
    vert_norm[faces[:, 2]] += face_norm.view(-1, 3)

    vert_norm = F.normalize(vert_norm, dim=-1).view(bs, nv, 3)

    return vert_norm


def calculate_mIoU(outputs, labels):

    SMOOTH = 1e-6

    outputs = outputs.int()
    labels = labels.int()

    intersection = ((outputs & labels).float().sum())  # Will be zero if Truth=0 or Prediction=0
    union = (outputs | labels).float().sum()  # Will be zzero if both are 0

    iou = (intersection + SMOOTH) / (union + SMOOTH)  # We smooth our devision to avoid 0/0

    thresholded = (torch.clamp(20 * (iou - 0.5), 0, 10).ceil() / 10)  # This is equal to comparing with thresolds

    return (thresholded.mean().detach().cpu().numpy()
           )  # Or thresholded.mean() if you are interested in average across the batch


def add_alpha(colors, alpha=0.7):

    colors_pad = np.pad(colors, ((0, 0), (0, 1)), mode="constant", constant_values=alpha)

    return colors_pad


def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type="smpl"):

    font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf")
    font = ImageFont.truetype(font_path, 30)
    grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), nrow=nrow, padding=0)
    grid_img = Image.fromarray(((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * 255.0).astype(np.uint8))

    if False:
        # add text
        draw = ImageDraw.Draw(grid_img)
        grid_size = 512
        if loss is not None:
            draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font)

        if type == "smpl":
            for col_id, col_txt in enumerate([
                    "image",
                    "smpl-norm(render)",
                    "cloth-norm(pred)",
                    "diff-norm",
                    "diff-mask",
            ]):
                draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
        elif type == "cloth":
            for col_id, col_txt in enumerate(["image", "cloth-norm(recon)", "cloth-norm(pred)", "diff-norm"]):
                draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
            for col_id, col_txt in enumerate(["0", "90", "180", "270"]):
                draw.text(
                    (10 + (col_id * grid_size), grid_size * 2 + 5),
                    col_txt,
                    (255, 0, 0),
                    font=font,
                )
        else:
            print(f"{type} should be 'smpl' or 'cloth'")

    grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), Image.ANTIALIAS)

    return grid_img


def clean_mesh(verts, faces):

    device = verts.device

    mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), faces.detach().cpu().numpy())
    mesh_lst = mesh_lst.split(only_watertight=False)
    comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst]

    mesh_clean = mesh_lst[comp_num.index(max(comp_num))]
    final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device)
    final_faces = torch.as_tensor(mesh_clean.faces).long().to(device)

    return final_verts, final_faces


def clean_floats(mesh):
    thres = mesh.vertices.shape[0] * 1e-2
    mesh_lst = mesh.split(only_watertight=False)
    clean_mesh_lst = [mesh for mesh in mesh_lst if mesh.vertices.shape[0] > thres]
    return sum(clean_mesh_lst)


def keep_largest(mesh):
    mesh_lst = mesh.split(only_watertight=False)
    keep_mesh = mesh_lst[0]
    for mesh in mesh_lst:
        if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]:
            keep_mesh = mesh
    return keep_mesh


def mesh_move(mesh_lst, step, scale=1.0):

    trans = np.array([1.0, 0.0, 0.0]) * step

    resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=trans)

    results = []

    for mesh in mesh_lst:
        mesh.apply_transform(resize_matrix)
        results.append(mesh)

    return results


def rescale_smpl(fitted_path, scale=100, translate=(0, 0, 0)):

    fitted_body = trimesh.load(fitted_path, process=False, maintain_order=True, skip_materials=True)
    resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=translate)

    fitted_body.apply_transform(resize_matrix)

    return np.array(fitted_body.vertices)


def get_joint_mesh(joints, radius=2.0):

    ball = trimesh.creation.icosphere(radius=radius)
    combined = None
    for joint in joints:
        ball_new = trimesh.Trimesh(vertices=ball.vertices + joint, faces=ball.faces, process=False)
        if combined is None:
            combined = ball_new
        else:
            combined = sum([combined, ball_new])
    return combined