# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import numpy as np import cv2 import pymeshlab import torch import torchvision import trimesh import os from termcolor import colored import os.path as osp import _pickle as cPickle from scipy.spatial import cKDTree from pytorch3d.structures import Meshes import torch.nn.functional as F import lib.smplx as smplx from pytorch3d.renderer.mesh import rasterize_meshes from PIL import Image, ImageFont, ImageDraw from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency import tinyobjloader from lib.common.imutils import uncrop from lib.common.render_utils import Pytorch3dRasterizer class SMPLX: def __init__(self): self.current_dir = osp.join(osp.dirname(__file__), "../../data/smpl_related") self.smpl_verts_path = osp.join(self.current_dir, "smpl_data/smpl_verts.npy") self.smpl_faces_path = osp.join(self.current_dir, "smpl_data/smpl_faces.npy") self.smplx_verts_path = osp.join(self.current_dir, "smpl_data/smplx_verts.npy") self.smplx_faces_path = osp.join(self.current_dir, "smpl_data/smplx_faces.npy") self.cmap_vert_path = osp.join(self.current_dir, "smpl_data/smplx_cmap.npy") self.smplx_to_smplx_path = osp.join(self.current_dir, "smpl_data/smplx_to_smpl.pkl") self.smplx_eyeball_fid_path = osp.join(self.current_dir, "smpl_data/eyeball_fid.npy") self.smplx_fill_mouth_fid_path = osp.join(self.current_dir, "smpl_data/fill_mouth_fid.npy") self.smplx_flame_vid_path = osp.join(self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy") self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl") self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy") self.smplx_vertex_lmkid_path = osp.join(self.current_dir, "smpl_data/smplx_vertex_lmkid.npy") self.smplx_faces = np.load(self.smplx_faces_path) self.smplx_verts = np.load(self.smplx_verts_path) self.smpl_verts = np.load(self.smpl_verts_path) self.smpl_faces = np.load(self.smpl_faces_path) self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path) self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path) self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path) self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True) self.smplx_mano_vid = np.concatenate([self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]]) self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True) self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)] # hands self.mano_vertex_mask = torch.zeros(self.smplx_verts.shape[0],).index_fill_(0, torch.tensor(self.smplx_mano_vid), 1.0) # face self.front_flame_vertex_mask = torch.zeros(self.smplx_verts.shape[0],).index_fill_( 0, torch.tensor(self.smplx_front_flame_vid), 1.0) self.eyeball_vertex_mask = torch.zeros(self.smplx_verts.shape[0],).index_fill_( 0, torch.tensor(self.smplx_faces[self.smplx_eyeball_fid_mask].flatten()), 1.0) self.smplx_to_smpl = cPickle.load(open(self.smplx_to_smplx_path, "rb")) self.model_dir = osp.join(self.current_dir, "models") self.tedra_dir = osp.join(self.current_dir, "../tedra_data") self.ghum_smpl_pairs = torch.tensor([ (0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16), (12, 17), (13, 18), (14, 19), (15, 20), (16, 21), (17, 39), (18, 44), (19, 36), (20, 41), (21, 35), (22, 40), (23, 1), (24, 2), (25, 4), (26, 5), (27, 7), (28, 8), (29, 31), (30, 34), (31, 29), (32, 32), ]).long() # smpl-smplx correspondence self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73] self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68] self.smpl_joint_ids_45 = (np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist()) self.extra_joint_ids = ( np.array([ 61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72, 74, 73, ]) + 68) self.smpl_joint_ids_45_pixie = (np.arange(22).tolist() + self.extra_joint_ids.tolist()) def cmap_smpl_vids(self, type): # smplx_to_smpl.pkl # KEYS: # closest_faces - [6890, 3] with smplx vert_idx # bc - [6890, 3] with barycentric weights cmap_smplx = torch.as_tensor(np.load(self.cmap_vert_path)).float() if type == "smplx": return cmap_smplx elif type == "smpl": bc = torch.as_tensor(self.smplx_to_smpl["bc"].astype(np.float32)) closest_faces = self.smplx_to_smpl["closest_faces"].astype(np.int32) cmap_smpl = torch.einsum("bij, bi->bj", cmap_smplx[closest_faces], bc) return cmap_smpl model_init_params = dict( gender="male", model_type="smplx", model_path=SMPLX().model_dir, create_global_orient=False, create_body_pose=False, create_betas=False, create_left_hand_pose=False, create_right_hand_pose=False, create_expression=False, create_jaw_pose=False, create_leye_pose=False, create_reye_pose=False, create_transl=False, num_pca_comps=12, ) def get_smpl_model(model_type, gender): return smplx.create(**model_init_params) def load_fit_body(fitted_path, scale, smpl_type="smplx", smpl_gender="neutral", noise_dict=None): param = np.load(fitted_path, allow_pickle=True) for key in param.keys(): param[key] = torch.as_tensor(param[key]) smpl_model = get_smpl_model(smpl_type, smpl_gender) model_forward_params = dict( betas=param["betas"], global_orient=param["global_orient"], body_pose=param["body_pose"], left_hand_pose=param["left_hand_pose"], right_hand_pose=param["right_hand_pose"], jaw_pose=param["jaw_pose"], leye_pose=param["leye_pose"], reye_pose=param["reye_pose"], expression=param["expression"], return_verts=True, ) if noise_dict is not None: model_forward_params.update(noise_dict) smpl_out = smpl_model(**model_forward_params) smpl_verts = ((smpl_out.vertices[0] * param["scale"] + param["translation"]) * scale).detach() smpl_joints = ((smpl_out.joints[0] * param["scale"] + param["translation"]) * scale).detach() smpl_mesh = trimesh.Trimesh(smpl_verts, smpl_model.faces, process=False, maintain_order=True) return smpl_mesh, smpl_joints def create_grid_points_from_xyz_bounds(bound, res): min_x, max_x, min_y, max_y, min_z, max_z = bound x = torch.linspace(min_x, max_x, res) y = torch.linspace(min_y, max_y, res) z = torch.linspace(min_z, max_z, res) X, Y, Z = torch.meshgrid(x, y, z, indexing='ij') return torch.stack([X, Y, Z], dim=-1) def create_grid_points_from_xy_bounds(bound, res): min_x, max_x, min_y, max_y = bound x = torch.linspace(min_x, max_x, res) y = torch.linspace(min_y, max_y, res) X, Y = torch.meshgrid(x, y, indexing='ij') return torch.stack([X, Y], dim=-1) def apply_face_mask(mesh, face_mask): mesh.update_faces(face_mask) mesh.remove_unreferenced_vertices() return mesh def apply_vertex_mask(mesh, vertex_mask): faces_mask = vertex_mask[mesh.faces].any(dim=1) mesh = apply_face_mask(mesh, faces_mask) return mesh def apply_vertex_face_mask(mesh, vertex_mask, face_mask): faces_mask = vertex_mask[mesh.faces].any(dim=1) * torch.tensor(face_mask) mesh.update_faces(faces_mask) mesh.remove_unreferenced_vertices() return mesh def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True): smpl_tree = cKDTree(smpl_obj.vertices) SMPL_container = SMPLX() from lib.dataset.PointFeat import PointFeat part_extractor = PointFeat( torch.tensor(part_mesh.vertices).unsqueeze(0).to(device), torch.tensor(part_mesh.faces).unsqueeze(0).to(device)) (part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device)) remove_mask = part_dist < thres if region == "hand": _, idx = smpl_tree.query(full_mesh.vertices, k=1) full_lmkid = SMPL_container.smplx_vertex_lmkid[idx] remove_mask = torch.logical_and(remove_mask, torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0)) elif region == "face": _, idx = smpl_tree.query(full_mesh.vertices, k=5) face_space_mask = torch.isin(torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid)) remove_mask = torch.logical_and(remove_mask, face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0)) BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1) full_mesh.update_faces(BNI_part_mask.detach().cpu()) full_mesh.remove_unreferenced_vertices() if clean: full_mesh = clean_floats(full_mesh) return full_mesh def cross(triangles): """ Returns the cross product of two edges from input triangles Parameters -------------- triangles: (n, 3, 3) float Vertices of triangles Returns -------------- crosses : (n, 3) float Cross product of two edge vectors """ vectors = np.diff(triangles, axis=1) crosses = np.cross(vectors[:, 0], vectors[:, 1]) return crosses def tri_area(triangles=None, crosses=None, sum=False): """ Calculates the sum area of input triangles Parameters ---------- triangles : (n, 3, 3) float Vertices of triangles crosses : (n, 3) float or None As a speedup don't re- compute cross products sum : bool Return summed area or individual triangle area Returns ---------- area : (n,) float or float Individual or summed area depending on `sum` argument """ if crosses is None: crosses = cross(triangles) area = (np.sum(crosses**2, axis=1)**.5) * .5 if sum: return np.sum(area) return area def sample_surface(triangles, count, area=None): """ Sample the surface of a mesh, returning the specified number of points For individual triangle sampling uses this method: http://mathworld.wolfram.com/TrianglePointPicking.html Parameters --------- triangles : (n, 3, 3) float Vertices of triangles count : int Number of points to return Returns --------- samples : (count, 3) float Points in space on the surface of mesh face_index : (count,) int Indices of faces for each sampled point """ # len(mesh.faces) float, array of the areas # of each face of the mesh if area is None: area = tri_area(triangles) # total area (float) area_sum = np.sum(area) # cumulative area (len(mesh.faces)) area_cum = np.cumsum(area) face_pick = np.random.random(count) * area_sum face_index = np.searchsorted(area_cum, face_pick) # pull triangles into the form of an origin + 2 vectors tri_origins = triangles[:, 0] tri_vectors = triangles[:, 1:].copy() tri_vectors -= np.tile(tri_origins, (1, 2)).reshape((-1, 2, 3)) # pull the vectors for the faces we are going to sample from tri_origins = tri_origins[face_index] tri_vectors = tri_vectors[face_index] # randomly generate two 0-1 scalar components to multiply edge vectors by random_lengths = np.random.random((len(tri_vectors), 2, 1)) # points will be distributed on a quadrilateral if we use 2 0-1 samples # if the two scalar components sum less than 1.0 the point will be # inside the triangle, so we find vectors longer than 1.0 and # transform them to be inside the triangle random_test = random_lengths.sum(axis=1).reshape(-1) > 1.0 random_lengths[random_test] -= 1.0 random_lengths = np.abs(random_lengths) # multiply triangle edge vectors by the random lengths and sum sample_vector = (tri_vectors * random_lengths).sum(axis=1) # finally, offset by the origin to generate # (n,3) points in space on the triangle samples = torch.tensor(sample_vector + tri_origins).float() return samples, face_index def obj_loader(path, with_uv=True): # Create reader. reader = tinyobjloader.ObjReader() # Load .obj(and .mtl) using default configuration ret = reader.ParseFromFile(path) # note here for wavefront obj, #v might not equal to #vt, same as #vn. attrib = reader.GetAttrib() v = np.array(attrib.vertices).reshape(-1, 3) vt = np.array(attrib.texcoords).reshape(-1, 2) shapes = reader.GetShapes() tri = shapes[0].mesh.numpy_indices().reshape(-1, 9) f_v = tri[:, [0, 3, 6]] f_vt = tri[:, [2, 5, 8]] if with_uv: face_uvs = vt[f_vt].mean(axis=1) #[m, 2] vert_uvs = np.zeros((v.shape[0], 2), dtype=np.float32) #[n, 2] vert_uvs[f_v.reshape(-1)] = vt[f_vt.reshape(-1)] return v, f_v, vert_uvs, face_uvs else: return v, f_v class HoppeMesh: def __init__(self, verts, faces, uvs=None, texture=None): """ The HoppeSDF calculates signed distance towards a predefined oriented point cloud http://hhoppe.com/recon.pdf For clean and high-resolution pcl data, this is the fastest and accurate approximation of sdf """ # self.device = torch.device("cuda:0") mesh = trimesh.Trimesh(verts, faces, process=False, maintains_order=True) self.verts = torch.tensor(verts).float() self.faces = torch.tensor(faces).long() self.vert_normals = torch.tensor(mesh.vertex_normals).float() if (uvs is not None) and (texture is not None): self.vertex_colors = trimesh.visual.color.uv_to_color(uvs, texture) self.face_normals = torch.tensor(mesh.face_normals).float() def get_colors(self, points, faces): """ Get colors of surface points from texture image through barycentric interpolation. - points: [n, 3] - return: [n, 4] rgba """ triangles = self.verts[faces] #[n, 3, 3] barycentric = trimesh.triangles.points_to_barycentric(triangles, points) #[n, 3] vert_colors = self.vertex_colors[faces] #[n, 3, 4] point_colors = torch.tensor((barycentric[:, :, None] * vert_colors).sum(axis=1)).float() return point_colors def triangles(self): return self.verts[self.faces].numpy() #[n, 3, 3] def tensor2variable(tensor, device): return tensor.requires_grad_(True).to(device) class GMoF(torch.nn.Module): def __init__(self, rho=1): super(GMoF, self).__init__() self.rho = rho def extra_repr(self): return "rho = {}".format(self.rho) def forward(self, residual): dist = torch.div(residual, residual + self.rho**2) return self.rho**2 * dist def mesh_edge_loss(meshes, target_length: float = 0.0): """ Computes mesh edge length regularization loss averaged across all meshes in a batch. Each mesh contributes equally to the final loss, regardless of the number of edges per mesh in the batch by weighting each mesh with the inverse number of edges. For example, if mesh 3 (out of N) has only E=4 edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to contribute to the final loss. Args: meshes: Meshes object with a batch of meshes. target_length: Resting value for the edge length. Returns: loss: Average loss across the batch. Returns 0 if meshes contains no meshes or all empty meshes. """ if meshes.isempty(): return torch.tensor([0.0], dtype=torch.float32, device=meshes.device, requires_grad=True) N = len(meshes) edges_packed = meshes.edges_packed() # (sum(E_n), 3) verts_packed = meshes.verts_packed() # (sum(V_n), 3) edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), ) num_edges_per_mesh = meshes.num_edges_per_mesh() # N # Determine the weight for each edge based on the number of edges in the # mesh it corresponds to. # TODO (nikhilar) Find a faster way of computing the weights for each edge # as this is currently a bottleneck for meshes with a large number of faces. weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx) weights = 1.0 / weights.float() verts_edges = verts_packed[edges_packed] v0, v1 = verts_edges.unbind(1) loss = ((v0 - v1).norm(dim=1, p=2) - target_length)**2.0 loss_vertex = loss * weights # loss_outlier = torch.topk(loss, 100)[0].mean() # loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N loss_all = loss_vertex.sum() / N return loss_all def remesh(obj, obj_path): obj.export(obj_path) ms = pymeshlab.MeshSet() ms.load_new_mesh(obj_path) # ms.meshing_decimation_quadric_edge_collapse(targetfacenum=100000) ms.meshing_isotropic_explicit_remeshing(targetlen=pymeshlab.Percentage(0.5), adaptive=True) ms.apply_coord_laplacian_smoothing() ms.save_current_mesh(obj_path[:-4] + "_remesh.obj") polished_mesh = trimesh.load_mesh(obj_path[:-4] + "_remesh.obj") return polished_mesh def poisson_remesh(obj_path): ms = pymeshlab.MeshSet() ms.load_new_mesh(obj_path) ms.meshing_decimation_quadric_edge_collapse(targetfacenum=50000) # ms.apply_coord_laplacian_smoothing() ms.save_current_mesh(obj_path) # ms.save_current_mesh(obj_path.replace(".obj", ".ply")) polished_mesh = trimesh.load_mesh(obj_path) return polished_mesh def poisson(mesh, obj_path, depth=10): from pypoisson import poisson_reconstruction faces, vertices = poisson_reconstruction(mesh.vertices, mesh.vertex_normals, depth=depth) new_meshes = trimesh.Trimesh(vertices, faces) new_mesh_lst = new_meshes.split(only_watertight=False) comp_num = [new_mesh.vertices.shape[0] for new_mesh in new_mesh_lst] final_mesh = new_mesh_lst[comp_num.index(max(comp_num))] final_mesh.export(obj_path) final_mesh = poisson_remesh(obj_path) return final_mesh def get_mask(tensor, dim): mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0 mask = mask.type_as(tensor) return mask def blend_rgb_norm(norms, data): # norms [N, 3, res, res] masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1) norm_mask = F.interpolate( torch.cat([norms, masks], dim=1).detach().cpu(), size=data["uncrop_param"]["box_shape"], mode="bilinear", align_corners=False).permute(0, 2, 3, 1).numpy() final = data["img_raw"] for idx in range(len(norms)): norm_pred = (norm_mask[idx, :, :, :3] + 1.0) * 255.0 / 2.0 mask_pred = np.repeat(norm_mask[idx, :, :, 3:4], 3, axis=-1) norm_ori = unwrap(norm_pred, data["uncrop_param"], idx) mask_ori = unwrap(mask_pred, data["uncrop_param"], idx) final = final * (1.0 - mask_ori) + norm_ori * mask_ori return final.astype(np.uint8) def unwrap(image, uncrop_param, idx): img_uncrop = uncrop( image, uncrop_param["center"][idx], uncrop_param["scale"][idx], uncrop_param["crop_shape"], ) img_orig = cv2.warpAffine( img_uncrop, np.linalg.inv(uncrop_param["M"])[:2, :], uncrop_param["ori_shape"][::-1], flags=cv2.INTER_CUBIC, ) return img_orig # Losses to smooth / regularize the mesh shape def update_mesh_shape_prior_losses(mesh, losses): # and (b) the edge length of the predicted mesh losses["edge"]["value"] = mesh_edge_loss(mesh) # mesh normal consistency losses["nc"]["value"] = mesh_normal_consistency(mesh) # mesh laplacian smoothing losses["laplacian"]["value"] = mesh_laplacian_smoothing(mesh, method="uniform") def rename(old_dict, old_name, new_name): new_dict = {} for key, value in zip(old_dict.keys(), old_dict.values()): new_key = key if key != old_name else new_name new_dict[new_key] = old_dict[key] return new_dict def load_checkpoint(model, cfg): model_dict = model.state_dict() main_dict = {} normal_dict = {} device = torch.device(f"cuda:{cfg['test_gpus'][0]}") if os.path.exists(cfg.resume_path) and cfg.resume_path.endswith("ckpt"): main_dict = torch.load(cfg.resume_path, map_location=device)["state_dict"] main_dict = { k: v for k, v in main_dict.items() if k in model_dict and v.shape == model_dict[k].shape and ("reconEngine" not in k) and ("normal_filter" not in k) and ("voxelization" not in k) } print(colored(f"Resume MLP weights from {cfg.resume_path}", "green")) if os.path.exists(cfg.normal_path) and cfg.normal_path.endswith("ckpt"): normal_dict = torch.load(cfg.normal_path, map_location=device)["state_dict"] for key in normal_dict.keys(): normal_dict = rename(normal_dict, key, key.replace("netG", "netG.normal_filter")) normal_dict = {k: v for k, v in normal_dict.items() if k in model_dict and v.shape == model_dict[k].shape} print(colored(f"Resume normal model from {cfg.normal_path}", "green")) model_dict.update(main_dict) model_dict.update(normal_dict) model.load_state_dict(model_dict) model.netG = model.netG.to(device) model.reconEngine = model.reconEngine.to(device) model.netG.training = False model.netG.eval() del main_dict del normal_dict del model_dict torch.cuda.empty_cache() return model def read_smpl_constants(folder): """Load smpl vertex code""" smpl_vtx_std = np.loadtxt(os.path.join(folder, "vertices.txt")) min_x = np.min(smpl_vtx_std[:, 0]) max_x = np.max(smpl_vtx_std[:, 0]) min_y = np.min(smpl_vtx_std[:, 1]) max_y = np.max(smpl_vtx_std[:, 1]) min_z = np.min(smpl_vtx_std[:, 2]) max_z = np.max(smpl_vtx_std[:, 2]) smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x) smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y) smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z) smpl_vertex_code = np.float32(np.copy(smpl_vtx_std)) """Load smpl faces & tetrahedrons""" smpl_faces = np.loadtxt(os.path.join(folder, "faces.txt"), dtype=np.int32) - 1 smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] + smpl_vertex_code[smpl_faces[:, 1]] + smpl_vertex_code[smpl_faces[:, 2]]) / 3.0 smpl_tetras = (np.loadtxt(os.path.join(folder, "tetrahedrons.txt"), dtype=np.int32) - 1) return_dict = { "smpl_vertex_code": torch.tensor(smpl_vertex_code), "smpl_face_code": torch.tensor(smpl_face_code), "smpl_faces": torch.tensor(smpl_faces), "smpl_tetras": torch.tensor(smpl_tetras) } return return_dict def feat_select(feat, select): # feat [B, featx2, N] # select [B, 1, N] # return [B, feat, N] dim = feat.shape[1] // 2 idx = torch.tile((1 - select), (1, dim, 1)) * dim + torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select) feat_select = torch.gather(feat, 1, idx.long()) return feat_select def get_visibility(xy, z, faces, img_res=2**12, blur_radius=0.0, faces_per_pixel=1): """get the visibility of vertices Args: xy (torch.tensor): [B, N,2] z (torch.tensor): [B, N,1] faces (torch.tensor): [B, N,3] size (int): resolution of rendered image """ if xy.ndimension() == 2: xy = xy.unsqueeze(0) z = z.unsqueeze(0) faces = faces.unsqueeze(0) xyz = (torch.cat((xy, -z), dim=-1) + 1.) / 2. N_body = xyz.shape[0] faces = faces.long().repeat(N_body, 1, 1) vis_mask = torch.zeros(size=(N_body, z.shape[1])) rasterizer = Pytorch3dRasterizer(image_size=img_res) meshes_screen = Meshes(verts=xyz, faces=faces) pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( meshes_screen, image_size=rasterizer.raster_settings.image_size, blur_radius=blur_radius, faces_per_pixel=faces_per_pixel, bin_size=rasterizer.raster_settings.bin_size, max_faces_per_bin=rasterizer.raster_settings.max_faces_per_bin, perspective_correct=rasterizer.raster_settings.perspective_correct, cull_backfaces=rasterizer.raster_settings.cull_backfaces, ) pix_to_face = pix_to_face.detach().cpu().view(N_body, -1) faces = faces.detach().cpu() for idx in range(N_body): Num_faces = len(faces[idx]) vis_vertices_id = torch.unique(faces[idx][torch.unique(pix_to_face[idx][pix_to_face[idx] != -1]) - Num_faces * idx, :]) vis_mask[idx, vis_vertices_id] = 1.0 # print("------------------------\n") # print(f"keep points : {vis_mask.sum()/len(vis_mask)}") return vis_mask def barycentric_coordinates_of_projection(points, vertices): """https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py""" """Given a point, gives projected coords of that point to a triangle in barycentric coordinates. See **Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05 at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf :param p: point to project. [B, 3] :param v0: first vertex of triangles. [B, 3] :returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v`` vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN`` """ # (p, q, u, v) v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2] u = v1 - v0 v = v2 - v0 n = torch.cross(u, v) sb = torch.sum(n * n, dim=1) # If the triangle edges are collinear, cross-product is zero, # which makes "s" 0, which gives us divide by zero. So we # make the arbitrary choice to set s to epsv (=numpy.spacing(1)), # the closest thing to zero sb[sb == 0] = 1e-6 oneOver4ASquared = 1.0 / sb w = points - v0 b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1) # check barycenric weights # p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3] return weights def orthogonal(points, calibrations, transforms=None): """ Compute the orthogonal projections of 3D points into the image plane by given projection matrix :param points: [B, 3, N] Tensor of 3D points :param calibrations: [B, 3, 4] Tensor of projection matrix :param transforms: [B, 2, 3] Tensor of image transform matrix :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane """ rot = calibrations[:, :3, :3] trans = calibrations[:, :3, 3:4] pts = torch.baddbmm(trans, rot, points) # [B, 3, N] if transforms is not None: scale = transforms[:2, :2] shift = transforms[:2, 2:3] pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) return pts def projection(points, calib): if torch.is_tensor(points): calib = torch.as_tensor(calib) if not torch.is_tensor(calib) else calib return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3] else: return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3] def load_calib(calib_path): calib_data = np.loadtxt(calib_path, dtype=float) extrinsic = calib_data[:4, :4] intrinsic = calib_data[4:8, :4] calib_mat = np.matmul(intrinsic, extrinsic) calib_mat = torch.from_numpy(calib_mat).float() return calib_mat def normalize_v3(arr): """ Normalize a numpy array of 3 component vectors shape=(n,3) """ lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2) eps = 0.00000001 lens[lens < eps] = eps arr[:, 0] /= lens arr[:, 1] /= lens arr[:, 2] /= lens return arr def compute_normal(vertices, faces): # Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype) # Create an indexed view into the vertex array using the array of three indices for triangles tris = vertices[faces] # Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0]) # n is now an array of normals per triangle. The length of each normal is dependent the vertices, # we need to normalize these, so that our next step weights each normal equally. normalize_v3(face_norms) # now we have a normalized array of normals, one per triangle, i.e., per triangle normals. # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle, # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards. # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array vert_norms[faces[:, 0]] += face_norms vert_norms[faces[:, 1]] += face_norms vert_norms[faces[:, 2]] += face_norms normalize_v3(vert_norms) return vert_norms, face_norms def face_vertices(vertices, faces): """ :param vertices: [batch size, number of vertices, 3] :param faces: [batch size, number of faces, 3] :return: [batch size, number of faces, 3, 3] """ bs, nv = vertices.shape[:2] bs, nf = faces.shape[:2] device = vertices.device faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] vertices = vertices.reshape((bs * nv, vertices.shape[-1])) return vertices[faces.long()] def compute_normal_batch(vertices, faces): if faces.shape[0] != vertices.shape[0]: faces = faces.repeat(vertices.shape[0], 1, 1) bs, nv = vertices.shape[:2] bs, nf = faces.shape[:2] vert_norm = torch.zeros(bs * nv, 3).type_as(vertices) tris = face_vertices(vertices, faces) face_norm = F.normalize( torch.cross(tris[:, :, 1] - tris[:, :, 0], tris[:, :, 2] - tris[:, :, 0]), dim=-1, ) faces = (faces + (torch.arange(bs).type_as(faces) * nv)[:, None, None]).view(-1, 3) vert_norm[faces[:, 0]] += face_norm.view(-1, 3) vert_norm[faces[:, 1]] += face_norm.view(-1, 3) vert_norm[faces[:, 2]] += face_norm.view(-1, 3) vert_norm = F.normalize(vert_norm, dim=-1).view(bs, nv, 3) return vert_norm def calculate_mIoU(outputs, labels): SMOOTH = 1e-6 outputs = outputs.int() labels = labels.int() intersection = ((outputs & labels).float().sum()) # Will be zero if Truth=0 or Prediction=0 union = (outputs | labels).float().sum() # Will be zzero if both are 0 iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0 thresholded = (torch.clamp(20 * (iou - 0.5), 0, 10).ceil() / 10) # This is equal to comparing with thresolds return (thresholded.mean().detach().cpu().numpy() ) # Or thresholded.mean() if you are interested in average across the batch def add_alpha(colors, alpha=0.7): colors_pad = np.pad(colors, ((0, 0), (0, 1)), mode="constant", constant_values=alpha) return colors_pad def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type="smpl"): font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf") font = ImageFont.truetype(font_path, 30) grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), nrow=nrow, padding=0) grid_img = Image.fromarray(((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * 255.0).astype(np.uint8)) if False: # add text draw = ImageDraw.Draw(grid_img) grid_size = 512 if loss is not None: draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font) if type == "smpl": for col_id, col_txt in enumerate([ "image", "smpl-norm(render)", "cloth-norm(pred)", "diff-norm", "diff-mask", ]): draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font) elif type == "cloth": for col_id, col_txt in enumerate(["image", "cloth-norm(recon)", "cloth-norm(pred)", "diff-norm"]): draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font) for col_id, col_txt in enumerate(["0", "90", "180", "270"]): draw.text( (10 + (col_id * grid_size), grid_size * 2 + 5), col_txt, (255, 0, 0), font=font, ) else: print(f"{type} should be 'smpl' or 'cloth'") grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), Image.ANTIALIAS) return grid_img def clean_mesh(verts, faces): device = verts.device mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), faces.detach().cpu().numpy()) mesh_lst = mesh_lst.split(only_watertight=False) comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst] mesh_clean = mesh_lst[comp_num.index(max(comp_num))] final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device) final_faces = torch.as_tensor(mesh_clean.faces).long().to(device) return final_verts, final_faces def clean_floats(mesh): thres = mesh.vertices.shape[0] * 1e-2 mesh_lst = mesh.split(only_watertight=False) clean_mesh_lst = [mesh for mesh in mesh_lst if mesh.vertices.shape[0] > thres] return sum(clean_mesh_lst) def keep_largest(mesh): mesh_lst = mesh.split(only_watertight=False) keep_mesh = mesh_lst[0] for mesh in mesh_lst: if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]: keep_mesh = mesh return keep_mesh def mesh_move(mesh_lst, step, scale=1.0): trans = np.array([1.0, 0.0, 0.0]) * step resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=trans) results = [] for mesh in mesh_lst: mesh.apply_transform(resize_matrix) results.append(mesh) return results def rescale_smpl(fitted_path, scale=100, translate=(0, 0, 0)): fitted_body = trimesh.load(fitted_path, process=False, maintain_order=True, skip_materials=True) resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=translate) fitted_body.apply_transform(resize_matrix) return np.array(fitted_body.vertices) def get_joint_mesh(joints, radius=2.0): ball = trimesh.creation.icosphere(radius=radius) combined = None for joint in joints: ball_new = trimesh.Trimesh(vertices=ball.vertices + joint, faces=ball.faces, process=False) if combined is None: combined = ball_new else: combined = sum([combined, ball_new]) return combined