File size: 15,118 Bytes
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

from lib.net.voxelize import Voxelization
from lib.dataset.mesh_util import cal_sdf_batch, feat_select, read_smpl_constants
from lib.net.NormalNet import NormalNet
from lib.net.MLP import MLP
from lib.dataset.mesh_util import SMPLX
from lib.net.VE import VolumeEncoder
from lib.net.HGFilters import *
from termcolor import colored
from lib.net.BasePIFuNet import BasePIFuNet
import torch.nn as nn
import torch


maskout = False


class HGPIFuNet(BasePIFuNet):
    '''
    HG PIFu network uses Hourglass stacks as the image filter.
    It does the following:
        1. Compute image feature stacks and store it in self.im_feat_list
            self.im_feat_list[-1] is the last stack (output stack)
        2. Calculate calibration
        3. If training, it index on every intermediate stacks,
            If testing, it index on the last stack.
        4. Classification.
        5. During training, error is calculated on all stacks.
    '''

    def __init__(self,
                 cfg,
                 projection_mode='orthogonal',
                 error_term=nn.MSELoss()):

        super(HGPIFuNet, self).__init__(projection_mode=projection_mode,
                                        error_term=error_term)

        self.l1_loss = nn.SmoothL1Loss()
        self.opt = cfg.net
        self.root = cfg.root
        self.overfit = cfg.overfit

        channels_IF = self.opt.mlp_dim

        self.use_filter = self.opt.use_filter
        self.prior_type = self.opt.prior_type
        self.smpl_feats = self.opt.smpl_feats

        self.smpl_dim = self.opt.smpl_dim
        self.voxel_dim = self.opt.voxel_dim
        self.hourglass_dim = self.opt.hourglass_dim
        self.sdf_clip = cfg.sdf_clip / 100.0

        self.in_geo = [item[0] for item in self.opt.in_geo]
        self.in_nml = [item[0] for item in self.opt.in_nml]

        self.in_geo_dim = sum([item[1] for item in self.opt.in_geo])
        self.in_nml_dim = sum([item[1] for item in self.opt.in_nml])

        self.in_total = self.in_geo + self.in_nml
        self.smpl_feat_dict = None
        self.smplx_data = SMPLX()

        if self.prior_type == 'icon':
            if 'image' in self.in_geo:
                self.channels_filter = [[0, 1, 2, 3, 4, 5], [0, 1, 2, 6, 7, 8]]
            else:
                self.channels_filter = [[0, 1, 2], [3, 4, 5]]

        else:
            if 'image' in self.in_geo:
                self.channels_filter = [[0, 1, 2, 3, 4, 5, 6, 7, 8]]
            else:
                self.channels_filter = [[0, 1, 2, 3, 4, 5]]

        channels_IF[0] = self.hourglass_dim if self.use_filter else len(
            self.channels_filter[0])

        if self.prior_type == 'icon' and 'vis' not in self.smpl_feats:
            if self.use_filter:
                channels_IF[0] += self.hourglass_dim
            else:
                channels_IF[0] += len(self.channels_filter[0])

        if self.prior_type == 'icon':
            channels_IF[0] += self.smpl_dim
        elif self.prior_type == 'pamir':
            channels_IF[0] += self.voxel_dim
            smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras = read_smpl_constants(
                self.smplx_data.tedra_dir)
            self.voxelization = Voxelization(
                smpl_vertex_code,
                smpl_face_code,
                smpl_faces,
                smpl_tetras,
                volume_res=128,
                sigma=0.05,
                smooth_kernel_size=7,
                batch_size=cfg.batch_size,
                device=torch.device(f"cuda:{cfg.gpus[0]}"))
            self.ve = VolumeEncoder(3, self.voxel_dim, self.opt.num_stack)
        else:
            channels_IF[0] += 1

        self.icon_keys = ["smpl_verts", "smpl_faces", "smpl_vis", "smpl_cmap"]
        self.pamir_keys = [
            "voxel_verts", "voxel_faces", "pad_v_num", "pad_f_num"
        ]

        self.if_regressor = MLP(
            filter_channels=channels_IF,
            name='if',
            res_layers=self.opt.res_layers,
            norm=self.opt.norm_mlp,
            last_op=nn.Sigmoid() if not cfg.test_mode else None)

        # network
        if self.use_filter:
            if self.opt.gtype == "HGPIFuNet":
                self.F_filter = HGFilter(self.opt, self.opt.num_stack,
                                         len(self.channels_filter[0]))
            else:
                print(
                    colored(f"Backbone {self.opt.gtype} is unimplemented",
                            'green'))

        summary_log = f"{self.prior_type.upper()}:\n" + \
            f"w/ Global Image Encoder: {self.use_filter}\n" + \
            f"Image Features used by MLP: {self.in_geo}\n"

        if self.prior_type == "icon":
            summary_log += f"Geometry Features used by MLP: {self.smpl_feats}\n"
            summary_log += f"Dim of Image Features (local): 6\n"
            summary_log += f"Dim of Geometry Features (ICON): {self.smpl_dim}\n"
        elif self.prior_type == "pamir":
            summary_log += f"Dim of Image Features (global): {self.hourglass_dim}\n"
            summary_log += f"Dim of Geometry Features (PaMIR): {self.voxel_dim}\n"
        else:
            summary_log += f"Dim of Image Features (global): {self.hourglass_dim}\n"
            summary_log += f"Dim of Geometry Features (PIFu): 1 (z-value)\n"

        summary_log += f"Dim of MLP's first layer: {channels_IF[0]}\n"

        print(colored(summary_log, "yellow"))

        self.normal_filter = NormalNet(cfg)
        init_net(self)

    def get_normal(self, in_tensor_dict):

        # insert normal features
        if (not self.training) and (not self.overfit):
            # print(colored("infer normal","blue"))
            with torch.no_grad():
                feat_lst = []
                if "image" in self.in_geo:
                    feat_lst.append(
                        in_tensor_dict['image'])  # [1, 3, 512, 512]
                if 'normal_F' in self.in_geo and 'normal_B' in self.in_geo:
                    if 'normal_F' not in in_tensor_dict.keys(
                    ) or 'normal_B' not in in_tensor_dict.keys():
                        (nmlF, nmlB) = self.normal_filter(in_tensor_dict)
                    else:
                        nmlF = in_tensor_dict['normal_F']
                        nmlB = in_tensor_dict['normal_B']
                    feat_lst.append(nmlF)  # [1, 3, 512, 512]
                    feat_lst.append(nmlB)  # [1, 3, 512, 512]
            in_filter = torch.cat(feat_lst, dim=1)

        else:
            in_filter = torch.cat([in_tensor_dict[key] for key in self.in_geo],
                                  dim=1)

        return in_filter

    def get_mask(self, in_filter, size=128):

        mask = F.interpolate(in_filter[:, self.channels_filter[0]],
                             size=(size, size),
                             mode="bilinear",
                             align_corners=True).abs().sum(dim=1,
                                                           keepdim=True) != 0.0

        return mask

    def filter(self, in_tensor_dict, return_inter=False):
        '''
        Filter the input images
        store all intermediate features.
        :param images: [B, C, H, W] input images
        '''

        in_filter = self.get_normal(in_tensor_dict)

        features_G = []

        if self.prior_type == 'icon':
            if self.use_filter:
                features_F = self.F_filter(in_filter[:,
                                                     self.channels_filter[0]]
                                           )  # [(B,hg_dim,128,128) * 4]
                features_B = self.F_filter(in_filter[:,
                                                     self.channels_filter[1]]
                                           )  # [(B,hg_dim,128,128) * 4]
            else:
                features_F = [in_filter[:, self.channels_filter[0]]]
                features_B = [in_filter[:, self.channels_filter[1]]]
            for idx in range(len(features_F)):
                features_G.append(
                    torch.cat([features_F[idx], features_B[idx]], dim=1))
        else:
            if self.use_filter:
                features_G = self.F_filter(in_filter[:,
                                                     self.channels_filter[0]])
            else:
                features_G = [in_filter[:, self.channels_filter[0]]]

        if self.prior_type == 'icon':
            self.smpl_feat_dict = {
                k: in_tensor_dict[k]
                for k in self.icon_keys
            }
        elif self.prior_type == "pamir":
            self.smpl_feat_dict = {
                k: in_tensor_dict[k]
                for k in self.pamir_keys
            }
        else:
            pass
            # print(colored("use z rather than icon or pamir", "green"))

        # If it is not in training, only produce the last im_feat
        if not self.training:
            features_out = [features_G[-1]]
        else:
            features_out = features_G

        if maskout:
            features_out_mask = []
            for feat in features_out:
                features_out_mask.append(
                    feat * self.get_mask(in_filter, size=feat.shape[2]))
            features_out = features_out_mask

        if return_inter:
            return features_out, in_filter
        else:
            return features_out

    def query(self, features, points, calibs, transforms=None, regressor=None):

        xyz = self.projection(points, calibs, transforms)

        (xy, z) = xyz.split([2, 1], dim=1)

        in_cube = (xyz > -1.0) & (xyz < 1.0)
        in_cube = in_cube.all(dim=1, keepdim=True).detach().float()

        preds_list = []

        if self.prior_type == 'icon':

            # smpl_verts [B, N_vert, 3]
            # smpl_faces [B, N_face, 3]
            # points [B, 3, N]

            smpl_sdf, smpl_norm, smpl_cmap, smpl_vis = cal_sdf_batch(
                self.smpl_feat_dict['smpl_verts'],
                self.smpl_feat_dict['smpl_faces'],
                self.smpl_feat_dict['smpl_cmap'],
                self.smpl_feat_dict['smpl_vis'],
                xyz.permute(0, 2, 1).contiguous())

            # smpl_sdf [B, N, 1]
            # smpl_norm [B, N, 3]
            # smpl_cmap [B, N, 3]
            # smpl_vis [B, N, 1]

            # set ourlier point features as uniform values
            smpl_outlier = torch.abs(smpl_sdf).ge(self.sdf_clip)
            smpl_sdf[smpl_outlier] = torch.sign(smpl_sdf[smpl_outlier])

            feat_lst = [smpl_sdf]
            if 'cmap' in self.smpl_feats:
                smpl_cmap[smpl_outlier.repeat(
                    1, 1, 3)] = smpl_sdf[smpl_outlier].repeat(1, 1, 3)
                feat_lst.append(smpl_cmap)
            if 'norm' in self.smpl_feats:
                feat_lst.append(smpl_norm)
            if 'vis' in self.smpl_feats:
                feat_lst.append(smpl_vis)

            smpl_feat = torch.cat(feat_lst, dim=2).permute(0, 2, 1)
            vol_feats = features

        elif self.prior_type == "pamir":

            voxel_verts = self.smpl_feat_dict[
                'voxel_verts'][:, :-self.smpl_feat_dict['pad_v_num'][0], :]
            voxel_faces = self.smpl_feat_dict[
                'voxel_faces'][:, :-self.smpl_feat_dict['pad_f_num'][0], :]

            self.voxelization.update_param(
                batch_size=voxel_faces.shape[0],
                smpl_tetra=voxel_faces[0].detach().cpu().numpy())
            vol = self.voxelization(voxel_verts)  # vol ~ [0,1]
            vol_feats = self.ve(vol, intermediate_output=self.training)
        else:
            vol_feats = features

        for im_feat, vol_feat in zip(features, vol_feats):

            # [B, Feat_i + z, N]
            # normal feature choice by smpl_vis
            if self.prior_type == 'icon':
                if 'vis' in self.smpl_feats:
                    point_local_feat = feat_select(self.index(im_feat, xy),
                                                   smpl_feat[:, [-1], :])
                    if maskout:
                        normal_mask = torch.tile(
                            point_local_feat.sum(dim=1, keepdims=True) == 0.0,
                            (1, smpl_feat.shape[1], 1))
                        normal_mask[:, 1:, :] = False
                        smpl_feat[normal_mask] = -1.0
                    point_feat_list = [point_local_feat, smpl_feat[:, :-1, :]]
                else:
                    point_local_feat = self.index(im_feat, xy)
                    point_feat_list = [point_local_feat, smpl_feat[:, :, :]]

            elif self.prior_type == 'pamir':
                # im_feat [B, hg_dim, 128, 128]
                # vol_feat [B, vol_dim, 32, 32, 32]
                point_feat_list = [
                    self.index(im_feat, xy),
                    self.index(vol_feat, xyz)
                ]

            else:
                point_feat_list = [self.index(im_feat, xy), z]

            point_feat = torch.cat(point_feat_list, 1)

            # out of image plane is always set to 0
            preds = regressor(point_feat)
            preds = in_cube * preds

            preds_list.append(preds)

        return preds_list

    def get_error(self, preds_if_list, labels):
        """calcaulate error

        Args:
            preds_list (list): list of torch.tensor(B, 3, N)
            labels (torch.tensor): (B, N_knn, N)

        Returns:
            torch.tensor: error
        """
        error_if = 0

        for pred_id in range(len(preds_if_list)):
            pred_if = preds_if_list[pred_id]
            error_if += self.error_term(pred_if, labels)

        error_if /= len(preds_if_list)

        return error_if

    def forward(self, in_tensor_dict):
        """
        sample_tensor [B, 3, N]
        calib_tensor [B, 4, 4]
        label_tensor [B, 1, N]
        smpl_feat_tensor [B, 59, N]
        """

        sample_tensor = in_tensor_dict['sample']
        calib_tensor = in_tensor_dict['calib']
        label_tensor = in_tensor_dict['label']

        in_feat = self.filter(in_tensor_dict)

        preds_if_list = self.query(in_feat,
                                   sample_tensor,
                                   calib_tensor,
                                   regressor=self.if_regressor)

        error = self.get_error(preds_if_list, label_tensor)

        return preds_if_list[-1], error