Spaces:
Runtime error
Runtime error
File size: 11,944 Bytes
2d5f249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os
from lib.renderer.mesh import load_scan, compute_tangent
from lib.renderer.camera import Camera
import cv2
import math
import random
import numpy as np
def render_result(rndr, shader_id, path, mask=False):
cam_render = rndr.get_color(shader_id)
cam_render = cv2.cvtColor(cam_render, cv2.COLOR_RGBA2BGRA)
os.makedirs(os.path.dirname(path), exist_ok=True)
if shader_id != 2:
cv2.imwrite(path, np.uint8(255.0 * cam_render))
else:
cam_render[:, :, -1] -= 0.5
cam_render[:, :, -1] *= 2.0
if not mask:
cv2.imwrite(path, np.uint8(255.0 / 2.0 * (cam_render + 1.0)))
else:
cv2.imwrite(path, np.uint8(-1.0 * cam_render[:, :, [3]]))
def make_rotate(rx, ry, rz):
sinX = np.sin(rx)
sinY = np.sin(ry)
sinZ = np.sin(rz)
cosX = np.cos(rx)
cosY = np.cos(ry)
cosZ = np.cos(rz)
Rx = np.zeros((3, 3))
Rx[0, 0] = 1.0
Rx[1, 1] = cosX
Rx[1, 2] = -sinX
Rx[2, 1] = sinX
Rx[2, 2] = cosX
Ry = np.zeros((3, 3))
Ry[0, 0] = cosY
Ry[0, 2] = sinY
Ry[1, 1] = 1.0
Ry[2, 0] = -sinY
Ry[2, 2] = cosY
Rz = np.zeros((3, 3))
Rz[0, 0] = cosZ
Rz[0, 1] = -sinZ
Rz[1, 0] = sinZ
Rz[1, 1] = cosZ
Rz[2, 2] = 1.0
R = np.matmul(np.matmul(Rz, Ry), Rx)
return R
def rotateSH(SH, R):
SHn = SH
# 1st order
SHn[1] = R[1, 1] * SH[1] - R[1, 2] * SH[2] + R[1, 0] * SH[3]
SHn[2] = -R[2, 1] * SH[1] + R[2, 2] * SH[2] - R[2, 0] * SH[3]
SHn[3] = R[0, 1] * SH[1] - R[0, 2] * SH[2] + R[0, 0] * SH[3]
# 2nd order
SHn[4:, 0] = rotateBand2(SH[4:, 0], R)
SHn[4:, 1] = rotateBand2(SH[4:, 1], R)
SHn[4:, 2] = rotateBand2(SH[4:, 2], R)
return SHn
def rotateBand2(x, R):
s_c3 = 0.94617469575
s_c4 = -0.31539156525
s_c5 = 0.54627421529
s_c_scale = 1.0 / 0.91529123286551084
s_c_scale_inv = 0.91529123286551084
s_rc2 = 1.5853309190550713 * s_c_scale
s_c4_div_c3 = s_c4 / s_c3
s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0
s_scale_dst2 = s_c3 * s_c_scale_inv
s_scale_dst4 = s_c5 * s_c_scale_inv
sh0 = x[3] + x[4] + x[4] - x[1]
sh1 = x[0] + s_rc2 * x[2] + x[3] + x[4]
sh2 = x[0]
sh3 = -x[3]
sh4 = -x[1]
r2x = R[0][0] + R[0][1]
r2y = R[1][0] + R[1][1]
r2z = R[2][0] + R[2][1]
r3x = R[0][0] + R[0][2]
r3y = R[1][0] + R[1][2]
r3z = R[2][0] + R[2][2]
r4x = R[0][1] + R[0][2]
r4y = R[1][1] + R[1][2]
r4z = R[2][1] + R[2][2]
sh0_x = sh0 * R[0][0]
sh0_y = sh0 * R[1][0]
d0 = sh0_x * R[1][0]
d1 = sh0_y * R[2][0]
d2 = sh0 * (R[2][0] * R[2][0] + s_c4_div_c3)
d3 = sh0_x * R[2][0]
d4 = sh0_x * R[0][0] - sh0_y * R[1][0]
sh1_x = sh1 * R[0][2]
sh1_y = sh1 * R[1][2]
d0 += sh1_x * R[1][2]
d1 += sh1_y * R[2][2]
d2 += sh1 * (R[2][2] * R[2][2] + s_c4_div_c3)
d3 += sh1_x * R[2][2]
d4 += sh1_x * R[0][2] - sh1_y * R[1][2]
sh2_x = sh2 * r2x
sh2_y = sh2 * r2y
d0 += sh2_x * r2y
d1 += sh2_y * r2z
d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2)
d3 += sh2_x * r2z
d4 += sh2_x * r2x - sh2_y * r2y
sh3_x = sh3 * r3x
sh3_y = sh3 * r3y
d0 += sh3_x * r3y
d1 += sh3_y * r3z
d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2)
d3 += sh3_x * r3z
d4 += sh3_x * r3x - sh3_y * r3y
sh4_x = sh4 * r4x
sh4_y = sh4 * r4y
d0 += sh4_x * r4y
d1 += sh4_y * r4z
d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2)
d3 += sh4_x * r4z
d4 += sh4_x * r4x - sh4_y * r4y
dst = x
dst[0] = d0
dst[1] = -d1
dst[2] = d2 * s_scale_dst2
dst[3] = -d3
dst[4] = d4 * s_scale_dst4
return dst
def load_calib(param, render_size=512):
# pixel unit / world unit
ortho_ratio = param['ortho_ratio']
# world unit / model unit
scale = param['scale']
# camera center world coordinate
center = param['center']
# model rotation
R = param['R']
translate = -np.matmul(R, center).reshape(3, 1)
extrinsic = np.concatenate([R, translate], axis=1)
extrinsic = np.concatenate(
[extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
# Match camera space to image pixel space
scale_intrinsic = np.identity(4)
scale_intrinsic[0, 0] = scale / ortho_ratio
scale_intrinsic[1, 1] = -scale / ortho_ratio
scale_intrinsic[2, 2] = scale / ortho_ratio
# Match image pixel space to image uv space
uv_intrinsic = np.identity(4)
uv_intrinsic[0, 0] = 1.0 / float(render_size // 2)
uv_intrinsic[1, 1] = 1.0 / float(render_size // 2)
uv_intrinsic[2, 2] = 1.0 / float(render_size // 2)
intrinsic = np.matmul(uv_intrinsic, scale_intrinsic)
calib = np.concatenate([extrinsic, intrinsic], axis=0)
return calib
def render_prt_ortho(out_path,
folder_name,
subject_name,
shs,
rndr,
rndr_uv,
im_size,
angl_step=4,
n_light=1,
pitch=[0]):
cam = Camera(width=im_size, height=im_size)
cam.ortho_ratio = 0.4 * (512 / im_size)
cam.near = -100
cam.far = 100
cam.sanity_check()
# set path for obj, prt
mesh_file = os.path.join(folder_name, subject_name + '_100k.obj')
if not os.path.exists(mesh_file):
print('ERROR: obj file does not exist!!', mesh_file)
return
prt_file = os.path.join(folder_name, 'bounce', 'bounce0.txt')
if not os.path.exists(prt_file):
print('ERROR: prt file does not exist!!!', prt_file)
return
face_prt_file = os.path.join(folder_name, 'bounce', 'face.npy')
if not os.path.exists(face_prt_file):
print('ERROR: face prt file does not exist!!!', prt_file)
return
text_file = os.path.join(folder_name, 'tex', subject_name + '_dif_2k.jpg')
if not os.path.exists(text_file):
print('ERROR: dif file does not exist!!', text_file)
return
texture_image = cv2.imread(text_file)
texture_image = cv2.cvtColor(texture_image, cv2.COLOR_BGR2RGB)
vertices, faces, normals, faces_normals, textures, face_textures = load_scan(
mesh_file, with_normal=True, with_texture=True)
vmin = vertices.min(0)
vmax = vertices.max(0)
up_axis = 1 if (vmax - vmin).argmax() == 1 else 2
vmed = np.median(vertices, 0)
vmed[up_axis] = 0.5 * (vmax[up_axis] + vmin[up_axis])
y_scale = 180 / (vmax[up_axis] - vmin[up_axis])
rndr.set_norm_mat(y_scale, vmed)
rndr_uv.set_norm_mat(y_scale, vmed)
tan, bitan = compute_tangent(vertices, faces, normals, textures,
face_textures)
prt = np.loadtxt(prt_file)
face_prt = np.load(face_prt_file)
rndr.set_mesh(vertices, faces, normals, faces_normals, textures,
face_textures, prt, face_prt, tan, bitan)
rndr.set_albedo(texture_image)
rndr_uv.set_mesh(vertices, faces, normals, faces_normals, textures,
face_textures, prt, face_prt, tan, bitan)
rndr_uv.set_albedo(texture_image)
os.makedirs(os.path.join(out_path, 'GEO', 'OBJ', subject_name),
exist_ok=True)
os.makedirs(os.path.join(out_path, 'PARAM', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'RENDER', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'MASK', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_RENDER', subject_name),
exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_MASK', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_POS', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_NORMAL', subject_name),
exist_ok=True)
if not os.path.exists(os.path.join(out_path, 'val.txt')):
f = open(os.path.join(out_path, 'val.txt'), 'w')
f.close()
# copy obj file
cmd = 'cp %s %s' % (mesh_file,
os.path.join(out_path, 'GEO', 'OBJ', subject_name))
print(cmd)
os.system(cmd)
for p in pitch:
for y in tqdm(range(0, 360, angl_step)):
R = np.matmul(make_rotate(math.radians(p), 0, 0),
make_rotate(0, math.radians(y), 0))
if up_axis == 2:
R = np.matmul(R, make_rotate(math.radians(90), 0, 0))
rndr.rot_matrix = R
rndr_uv.rot_matrix = R
rndr.set_camera(cam)
rndr_uv.set_camera(cam)
for j in range(n_light):
sh_id = random.randint(0, shs.shape[0] - 1)
sh = shs[sh_id]
sh_angle = 0.2 * np.pi * (random.random() - 0.5)
sh = rotateSH(sh, make_rotate(0, sh_angle, 0).T)
dic = {
'sh': sh,
'ortho_ratio': cam.ortho_ratio,
'scale': y_scale,
'center': vmed,
'R': R
}
rndr.set_sh(sh)
rndr.analytic = False
rndr.use_inverse_depth = False
rndr.display()
out_all_f = rndr.get_color(0)
out_mask = out_all_f[:, :, 3]
out_all_f = cv2.cvtColor(out_all_f, cv2.COLOR_RGBA2BGR)
np.save(
os.path.join(out_path, 'PARAM', subject_name,
'%d_%d_%02d.npy' % (y, p, j)), dic)
cv2.imwrite(
os.path.join(out_path, 'RENDER', subject_name,
'%d_%d_%02d.jpg' % (y, p, j)),
255.0 * out_all_f)
cv2.imwrite(
os.path.join(out_path, 'MASK', subject_name,
'%d_%d_%02d.png' % (y, p, j)),
255.0 * out_mask)
rndr_uv.set_sh(sh)
rndr_uv.analytic = False
rndr_uv.use_inverse_depth = False
rndr_uv.display()
uv_color = rndr_uv.get_color(0)
uv_color = cv2.cvtColor(uv_color, cv2.COLOR_RGBA2BGR)
cv2.imwrite(
os.path.join(out_path, 'UV_RENDER', subject_name,
'%d_%d_%02d.jpg' % (y, p, j)),
255.0 * uv_color)
if y == 0 and j == 0 and p == pitch[0]:
uv_pos = rndr_uv.get_color(1)
uv_mask = uv_pos[:, :, 3]
cv2.imwrite(
os.path.join(out_path, 'UV_MASK', subject_name,
'00.png'), 255.0 * uv_mask)
data = {
'default': uv_pos[:, :, :3]
} # default is a reserved name
pyexr.write(
os.path.join(out_path, 'UV_POS', subject_name,
'00.exr'), data)
uv_nml = rndr_uv.get_color(2)
uv_nml = cv2.cvtColor(uv_nml, cv2.COLOR_RGBA2BGR)
cv2.imwrite(
os.path.join(out_path, 'UV_NORMAL', subject_name,
'00.png'), 255.0 * uv_nml)
|