Spaces:
Runtime error
Runtime error
File size: 7,127 Bytes
2d5f249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
from lib.net.net_util import *
import torch.nn as nn
import torch.nn.functional as F
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features, opt):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self.opt = opt
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module('b1_' + str(level),
ConvBlock(self.features, self.features, self.opt))
self.add_module('b2_' + str(level),
ConvBlock(self.features, self.features, self.opt))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module('b2_plus_' + str(level),
ConvBlock(self.features, self.features, self.opt))
self.add_module('b3_' + str(level),
ConvBlock(self.features, self.features, self.opt))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
# NOTE: for newer PyTorch (1.3~), it seems that training results are degraded due to implementation diff in F.grid_sample
# if the pretrained model behaves weirdly, switch with the commented line.
# NOTE: I also found that "bicubic" works better.
up2 = F.interpolate(low3,
scale_factor=2,
mode='bicubic',
align_corners=True)
# up2 = F.interpolate(low3, scale_factor=2, mode='nearest)
return up1 + up2
def forward(self, x):
return self._forward(self.depth, x)
class HGFilter(nn.Module):
def __init__(self, opt, num_modules, in_dim):
super(HGFilter, self).__init__()
self.num_modules = num_modules
self.opt = opt
[k, s, d, p] = self.opt.conv1
# self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3)
self.conv1 = nn.Conv2d(in_dim,
64,
kernel_size=k,
stride=s,
dilation=d,
padding=p)
if self.opt.norm == 'batch':
self.bn1 = nn.BatchNorm2d(64)
elif self.opt.norm == 'group':
self.bn1 = nn.GroupNorm(32, 64)
if self.opt.hg_down == 'conv64':
self.conv2 = ConvBlock(64, 64, self.opt)
self.down_conv2 = nn.Conv2d(64,
128,
kernel_size=3,
stride=2,
padding=1)
elif self.opt.hg_down == 'conv128':
self.conv2 = ConvBlock(64, 128, self.opt)
self.down_conv2 = nn.Conv2d(128,
128,
kernel_size=3,
stride=2,
padding=1)
elif self.opt.hg_down == 'ave_pool':
self.conv2 = ConvBlock(64, 128, self.opt)
else:
raise NameError('Unknown Fan Filter setting!')
self.conv3 = ConvBlock(128, 128, self.opt)
self.conv4 = ConvBlock(128, 256, self.opt)
# Stacking part
for hg_module in range(self.num_modules):
self.add_module('m' + str(hg_module),
HourGlass(1, opt.num_hourglass, 256, self.opt))
self.add_module('top_m_' + str(hg_module),
ConvBlock(256, 256, self.opt))
self.add_module(
'conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
if self.opt.norm == 'batch':
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
elif self.opt.norm == 'group':
self.add_module('bn_end' + str(hg_module),
nn.GroupNorm(32, 256))
self.add_module(
'l' + str(hg_module),
nn.Conv2d(256,
opt.hourglass_dim,
kernel_size=1,
stride=1,
padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module(
'al' + str(hg_module),
nn.Conv2d(opt.hourglass_dim,
256,
kernel_size=1,
stride=1,
padding=0))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)), True)
tmpx = x
if self.opt.hg_down == 'ave_pool':
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
elif self.opt.hg_down in ['conv64', 'conv128']:
x = self.conv2(x)
x = self.down_conv2(x)
else:
raise NameError('Unknown Fan Filter setting!')
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(
self._modules['bn_end' + str(i)](
self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs
|