Spaces:
Runtime error
Runtime error
File size: 21,176 Bytes
2d5f249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import yaml
import os.path as osp
import torch
import numpy as np
import torch.nn.functional as F
from ..dataset.mesh_util import *
from ..net.geometry import orthogonal
from pytorch3d.renderer.mesh import rasterize_meshes
from .render_utils import Pytorch3dRasterizer
from pytorch3d.structures import Meshes
import cv2
from PIL import Image
from tqdm import tqdm
import os
from termcolor import colored
def reshape_sample_tensor(sample_tensor, num_views):
if num_views == 1:
return sample_tensor
# Need to repeat sample_tensor along the batch dim num_views times
sample_tensor = sample_tensor.unsqueeze(dim=1)
sample_tensor = sample_tensor.repeat(1, num_views, 1, 1)
sample_tensor = sample_tensor.view(
sample_tensor.shape[0] * sample_tensor.shape[1],
sample_tensor.shape[2], sample_tensor.shape[3])
return sample_tensor
def gen_mesh_eval(opt, net, cuda, data, resolution=None):
resolution = opt.resolution if resolution is None else resolution
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
net.filter(image_tensor)
b_min = data['b_min']
b_max = data['b_max']
try:
verts, faces, _, _ = reconstruction_faster(net,
cuda,
calib_tensor,
resolution,
b_min,
b_max,
use_octree=False)
except Exception as e:
print(e)
print('Can not create marching cubes at this time.')
verts, faces = None, None
return verts, faces
def gen_mesh(opt, net, cuda, data, save_path, resolution=None):
resolution = opt.resolution if resolution is None else resolution
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
net.filter(image_tensor)
b_min = data['b_min']
b_max = data['b_max']
try:
save_img_path = save_path[:-4] + '.png'
save_img_list = []
for v in range(image_tensor.shape[0]):
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(),
(1, 2, 0)) * 0.5 +
0.5)[:, :, ::-1] * 255.0
save_img_list.append(save_img)
save_img = np.concatenate(save_img_list, axis=1)
Image.fromarray(np.uint8(save_img[:, :, ::-1])).save(save_img_path)
verts, faces, _, _ = reconstruction_faster(net, cuda, calib_tensor,
resolution, b_min, b_max)
verts_tensor = torch.from_numpy(
verts.T).unsqueeze(0).to(device=cuda).float()
xyz_tensor = net.projection(verts_tensor, calib_tensor[:1])
uv = xyz_tensor[:, :2, :]
color = netG.index(image_tensor[:1], uv).detach().cpu().numpy()[0].T
color = color * 0.5 + 0.5
save_obj_mesh_with_color(save_path, verts, faces, color)
except Exception as e:
print(e)
print('Can not create marching cubes at this time.')
verts, faces, color = None, None, None
return verts, faces, color
def gen_mesh_color(opt, netG, netC, cuda, data, save_path, use_octree=True):
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
netG.filter(image_tensor)
netC.filter(image_tensor)
netC.attach(netG.get_im_feat())
b_min = data['b_min']
b_max = data['b_max']
try:
save_img_path = save_path[:-4] + '.png'
save_img_list = []
for v in range(image_tensor.shape[0]):
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(),
(1, 2, 0)) * 0.5 +
0.5)[:, :, ::-1] * 255.0
save_img_list.append(save_img)
save_img = np.concatenate(save_img_list, axis=1)
Image.fromarray(np.uint8(save_img[:, :, ::-1])).save(save_img_path)
verts, faces, _, _ = reconstruction_faster(netG,
cuda,
calib_tensor,
opt.resolution,
b_min,
b_max,
use_octree=use_octree)
# Now Getting colors
verts_tensor = torch.from_numpy(
verts.T).unsqueeze(0).to(device=cuda).float()
verts_tensor = reshape_sample_tensor(verts_tensor, opt.num_views)
color = np.zeros(verts.shape)
interval = 10000
for i in range(len(color) // interval):
left = i * interval
right = i * interval + interval
if i == len(color) // interval - 1:
right = -1
netC.query(verts_tensor[:, :, left:right], calib_tensor)
rgb = netC.get_preds()[0].detach().cpu().numpy() * 0.5 + 0.5
color[left:right] = rgb.T
save_obj_mesh_with_color(save_path, verts, faces, color)
except Exception as e:
print(e)
print('Can not create marching cubes at this time.')
verts, faces, color = None, None, None
return verts, faces, color
def adjust_learning_rate(optimizer, epoch, lr, schedule, gamma):
"""Sets the learning rate to the initial LR decayed by schedule"""
if epoch in schedule:
lr *= gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def compute_acc(pred, gt, thresh=0.5):
'''
return:
IOU, precision, and recall
'''
with torch.no_grad():
vol_pred = pred > thresh
vol_gt = gt > thresh
union = vol_pred | vol_gt
inter = vol_pred & vol_gt
true_pos = inter.sum().float()
union = union.sum().float()
if union == 0:
union = 1
vol_pred = vol_pred.sum().float()
if vol_pred == 0:
vol_pred = 1
vol_gt = vol_gt.sum().float()
if vol_gt == 0:
vol_gt = 1
return true_pos / union, true_pos / vol_pred, true_pos / vol_gt
# def calc_metrics(opt, net, cuda, dataset, num_tests,
# resolution=128, sampled_points=1000, use_kaolin=True):
# if num_tests > len(dataset):
# num_tests = len(dataset)
# with torch.no_grad():
# chamfer_arr, p2s_arr = [], []
# for idx in tqdm(range(num_tests)):
# data = dataset[idx * len(dataset) // num_tests]
# verts, faces = gen_mesh_eval(opt, net, cuda, data, resolution)
# if verts is None:
# continue
# mesh_gt = trimesh.load(data['mesh_path'])
# mesh_gt = mesh_gt.split(only_watertight=False)
# comp_num = [mesh.vertices.shape[0] for mesh in mesh_gt]
# mesh_gt = mesh_gt[comp_num.index(max(comp_num))]
# mesh_pred = trimesh.Trimesh(verts, faces)
# gt_surface_pts, _ = trimesh.sample.sample_surface_even(
# mesh_gt, sampled_points)
# pred_surface_pts, _ = trimesh.sample.sample_surface_even(
# mesh_pred, sampled_points)
# if use_kaolin and has_kaolin:
# kal_mesh_gt = kal.rep.TriangleMesh.from_tensors(
# torch.tensor(mesh_gt.vertices).float().to(device=cuda),
# torch.tensor(mesh_gt.faces).long().to(device=cuda))
# kal_mesh_pred = kal.rep.TriangleMesh.from_tensors(
# torch.tensor(mesh_pred.vertices).float().to(device=cuda),
# torch.tensor(mesh_pred.faces).long().to(device=cuda))
# kal_distance_0 = kal.metrics.mesh.point_to_surface(
# torch.tensor(pred_surface_pts).float().to(device=cuda), kal_mesh_gt)
# kal_distance_1 = kal.metrics.mesh.point_to_surface(
# torch.tensor(gt_surface_pts).float().to(device=cuda), kal_mesh_pred)
# dist_gt_pred = torch.sqrt(kal_distance_0).cpu().numpy()
# dist_pred_gt = torch.sqrt(kal_distance_1).cpu().numpy()
# else:
# try:
# _, dist_pred_gt, _ = trimesh.proximity.closest_point(mesh_pred, gt_surface_pts)
# _, dist_gt_pred, _ = trimesh.proximity.closest_point(mesh_gt, pred_surface_pts)
# except Exception as e:
# print (e)
# continue
# chamfer_dist = 0.5 * (dist_pred_gt.mean() + dist_gt_pred.mean())
# p2s_dist = dist_pred_gt.mean()
# chamfer_arr.append(chamfer_dist)
# p2s_arr.append(p2s_dist)
# return np.average(chamfer_arr), np.average(p2s_arr)
def calc_error(opt, net, cuda, dataset, num_tests):
if num_tests > len(dataset):
num_tests = len(dataset)
with torch.no_grad():
erorr_arr, IOU_arr, prec_arr, recall_arr = [], [], [], []
for idx in tqdm(range(num_tests)):
data = dataset[idx * len(dataset) // num_tests]
# retrieve the data
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
sample_tensor = data['samples'].to(device=cuda).unsqueeze(0)
if opt.num_views > 1:
sample_tensor = reshape_sample_tensor(sample_tensor,
opt.num_views)
label_tensor = data['labels'].to(device=cuda).unsqueeze(0)
res, error = net.forward(image_tensor,
sample_tensor,
calib_tensor,
labels=label_tensor)
IOU, prec, recall = compute_acc(res, label_tensor)
# print(
# '{0}/{1} | Error: {2:06f} IOU: {3:06f} prec: {4:06f} recall: {5:06f}'
# .format(idx, num_tests, error.item(), IOU.item(), prec.item(), recall.item()))
erorr_arr.append(error.item())
IOU_arr.append(IOU.item())
prec_arr.append(prec.item())
recall_arr.append(recall.item())
return np.average(erorr_arr), np.average(IOU_arr), np.average(
prec_arr), np.average(recall_arr)
def calc_error_color(opt, netG, netC, cuda, dataset, num_tests):
if num_tests > len(dataset):
num_tests = len(dataset)
with torch.no_grad():
error_color_arr = []
for idx in tqdm(range(num_tests)):
data = dataset[idx * len(dataset) // num_tests]
# retrieve the data
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
color_sample_tensor = data['color_samples'].to(
device=cuda).unsqueeze(0)
if opt.num_views > 1:
color_sample_tensor = reshape_sample_tensor(
color_sample_tensor, opt.num_views)
rgb_tensor = data['rgbs'].to(device=cuda).unsqueeze(0)
netG.filter(image_tensor)
_, errorC = netC.forward(image_tensor,
netG.get_im_feat(),
color_sample_tensor,
calib_tensor,
labels=rgb_tensor)
# print('{0}/{1} | Error inout: {2:06f} | Error color: {3:06f}'
# .format(idx, num_tests, errorG.item(), errorC.item()))
error_color_arr.append(errorC.item())
return np.average(error_color_arr)
# pytorch lightning training related fucntions
def query_func(opt, netG, features, points, proj_matrix=None):
'''
- points: size of (bz, N, 3)
- proj_matrix: size of (bz, 4, 4)
return: size of (bz, 1, N)
'''
assert len(points) == 1
samples = points.repeat(opt.num_views, 1, 1)
samples = samples.permute(0, 2, 1) # [bz, 3, N]
# view specific query
if proj_matrix is not None:
samples = orthogonal(samples, proj_matrix)
calib_tensor = torch.stack([torch.eye(4).float()], dim=0).type_as(samples)
preds = netG.query(features=features,
points=samples,
calibs=calib_tensor,
regressor=netG.if_regressor)
if type(preds) is list:
preds = preds[0]
return preds
def isin(ar1, ar2):
return (ar1[..., None] == ar2).any(-1)
def in1d(ar1, ar2):
mask = ar2.new_zeros((max(ar1.max(), ar2.max()) + 1, ), dtype=torch.bool)
mask[ar2.unique()] = True
return mask[ar1]
def get_visibility(xy, z, faces):
"""get the visibility of vertices
Args:
xy (torch.tensor): [N,2]
z (torch.tensor): [N,1]
faces (torch.tensor): [N,3]
size (int): resolution of rendered image
"""
xyz = torch.cat((xy, -z), dim=1)
xyz = (xyz + 1.0) / 2.0
faces = faces.long()
rasterizer = Pytorch3dRasterizer(image_size=2**12)
meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...])
raster_settings = rasterizer.raster_settings
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=raster_settings.image_size,
blur_radius=raster_settings.blur_radius,
faces_per_pixel=raster_settings.faces_per_pixel,
bin_size=raster_settings.bin_size,
max_faces_per_bin=raster_settings.max_faces_per_bin,
perspective_correct=raster_settings.perspective_correct,
cull_backfaces=raster_settings.cull_backfaces,
)
vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :])
vis_mask = torch.zeros(size=(z.shape[0], 1))
vis_mask[vis_vertices_id] = 1.0
# print("------------------------\n")
# print(f"keep points : {vis_mask.sum()/len(vis_mask)}")
return vis_mask
def batch_mean(res, key):
# recursive mean for multilevel dicts
return torch.stack([
x[key] if isinstance(x, dict) else batch_mean(x, key) for x in res
]).mean()
def tf_log_convert(log_dict):
new_log_dict = log_dict.copy()
for k, v in log_dict.items():
new_log_dict[k.replace("_", "/")] = v
del new_log_dict[k]
return new_log_dict
def bar_log_convert(log_dict, name=None, rot=None):
from decimal import Decimal
new_log_dict = {}
if name is not None:
new_log_dict['name'] = name[0]
if rot is not None:
new_log_dict['rot'] = rot[0]
for k, v in log_dict.items():
color = "yellow"
if 'loss' in k:
color = "red"
k = k.replace("loss", "L")
elif 'acc' in k:
color = "green"
k = k.replace("acc", "A")
elif 'iou' in k:
color = "green"
k = k.replace("iou", "I")
elif 'prec' in k:
color = "green"
k = k.replace("prec", "P")
elif 'recall' in k:
color = "green"
k = k.replace("recall", "R")
if 'lr' not in k:
new_log_dict[colored(k.split("_")[1],
color)] = colored(f"{v:.3f}", color)
else:
new_log_dict[colored(k.split("_")[1],
color)] = colored(f"{Decimal(str(v)):.1E}",
color)
if 'loss' in new_log_dict.keys():
del new_log_dict['loss']
return new_log_dict
def accumulate(outputs, rot_num, split):
hparam_log_dict = {}
metrics = outputs[0].keys()
datasets = split.keys()
for dataset in datasets:
for metric in metrics:
keyword = f"hparam/{dataset}-{metric}"
if keyword not in hparam_log_dict.keys():
hparam_log_dict[keyword] = 0
for idx in range(split[dataset][0] * rot_num,
split[dataset][1] * rot_num):
hparam_log_dict[keyword] += outputs[idx][metric]
hparam_log_dict[keyword] /= (split[dataset][1] -
split[dataset][0]) * rot_num
print(colored(hparam_log_dict, "green"))
return hparam_log_dict
def calc_error_N(outputs, targets):
"""calculate the error of normal (IGR)
Args:
outputs (torch.tensor): [B, 3, N]
target (torch.tensor): [B, N, 3]
# manifold loss and grad_loss in IGR paper
grad_loss = ((nonmnfld_grad.norm(2, dim=-1) - 1) ** 2).mean()
normals_loss = ((mnfld_grad - normals).abs()).norm(2, dim=1).mean()
Returns:
torch.tensor: error of valid normals on the surface
"""
# outputs = torch.tanh(-outputs.permute(0,2,1).reshape(-1,3))
outputs = -outputs.permute(0, 2, 1).reshape(-1, 1)
targets = targets.reshape(-1, 3)[:, 2:3]
with_normals = targets.sum(dim=1).abs() > 0.0
# eikonal loss
grad_loss = ((outputs[with_normals].norm(2, dim=-1) - 1)**2).mean()
# normals loss
normal_loss = (outputs - targets)[with_normals].abs().norm(2, dim=1).mean()
return grad_loss * 0.0 + normal_loss
def calc_knn_acc(preds, carn_verts, labels, pick_num):
"""calculate knn accuracy
Args:
preds (torch.tensor): [B, 3, N]
carn_verts (torch.tensor): [SMPLX_V_num, 3]
labels (torch.tensor): [B, N_knn, N]
"""
N_knn_full = labels.shape[1]
preds = preds.permute(0, 2, 1).reshape(-1, 3)
labels = labels.permute(0, 2, 1).reshape(-1, N_knn_full) # [BxN, num_knn]
labels = labels[:, :pick_num]
dist = torch.cdist(preds, carn_verts, p=2) # [BxN, SMPL_V_num]
knn = dist.topk(k=pick_num, dim=1, largest=False)[1] # [BxN, num_knn]
cat_mat = torch.sort(torch.cat((knn, labels), dim=1))[0]
bool_col = torch.zeros_like(cat_mat)[:, 0]
for i in range(pick_num * 2 - 1):
bool_col += cat_mat[:, i] == cat_mat[:, i + 1]
acc = (bool_col > 0).sum() / len(bool_col)
return acc
def calc_acc_seg(output, target, num_multiseg):
from pytorch_lightning.metrics import Accuracy
return Accuracy()(output.reshape(-1, num_multiseg).cpu(),
target.flatten().cpu())
def add_watermark(imgs, titles):
# Write some Text
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (350, 50)
bottomRightCornerOfText = (800, 50)
fontScale = 1
fontColor = (1.0, 1.0, 1.0)
lineType = 2
for i in range(len(imgs)):
title = titles[i + 1]
cv2.putText(imgs[i], title, bottomLeftCornerOfText, font, fontScale,
fontColor, lineType)
if i == 0:
cv2.putText(imgs[i], str(titles[i][0]), bottomRightCornerOfText,
font, fontScale, fontColor, lineType)
result = np.concatenate(imgs, axis=0).transpose(2, 0, 1)
return result
def make_test_gif(img_dir):
if img_dir is not None and len(os.listdir(img_dir)) > 0:
for dataset in os.listdir(img_dir):
for subject in sorted(os.listdir(osp.join(img_dir, dataset))):
img_lst = []
im1 = None
for file in sorted(
os.listdir(osp.join(img_dir, dataset, subject))):
if file[-3:] not in ['obj', 'gif']:
img_path = os.path.join(img_dir, dataset, subject,
file)
if im1 == None:
im1 = Image.open(img_path)
else:
img_lst.append(Image.open(img_path))
print(os.path.join(img_dir, dataset, subject, "out.gif"))
im1.save(os.path.join(img_dir, dataset, subject, "out.gif"),
save_all=True,
append_images=img_lst,
duration=500,
loop=0)
def export_cfg(logger, cfg):
cfg_export_file = osp.join(logger.save_dir, logger.name,
f"version_{logger.version}", "cfg.yaml")
if not osp.exists(cfg_export_file):
os.makedirs(osp.dirname(cfg_export_file), exist_ok=True)
with open(cfg_export_file, "w+") as file:
_ = yaml.dump(cfg, file)
|