File size: 21,176 Bytes
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import yaml
import os.path as osp
import torch
import numpy as np
import torch.nn.functional as F
from ..dataset.mesh_util import *
from ..net.geometry import orthogonal
from pytorch3d.renderer.mesh import rasterize_meshes
from .render_utils import Pytorch3dRasterizer
from pytorch3d.structures import Meshes
import cv2
from PIL import Image
from tqdm import tqdm
import os
from termcolor import colored


def reshape_sample_tensor(sample_tensor, num_views):
    if num_views == 1:
        return sample_tensor
    # Need to repeat sample_tensor along the batch dim num_views times
    sample_tensor = sample_tensor.unsqueeze(dim=1)
    sample_tensor = sample_tensor.repeat(1, num_views, 1, 1)
    sample_tensor = sample_tensor.view(
        sample_tensor.shape[0] * sample_tensor.shape[1],
        sample_tensor.shape[2], sample_tensor.shape[3])
    return sample_tensor


def gen_mesh_eval(opt, net, cuda, data, resolution=None):
    resolution = opt.resolution if resolution is None else resolution
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    net.filter(image_tensor)

    b_min = data['b_min']
    b_max = data['b_max']
    try:
        verts, faces, _, _ = reconstruction_faster(net,
                                                   cuda,
                                                   calib_tensor,
                                                   resolution,
                                                   b_min,
                                                   b_max,
                                                   use_octree=False)

    except Exception as e:
        print(e)
        print('Can not create marching cubes at this time.')
        verts, faces = None, None
    return verts, faces


def gen_mesh(opt, net, cuda, data, save_path, resolution=None):
    resolution = opt.resolution if resolution is None else resolution
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    net.filter(image_tensor)

    b_min = data['b_min']
    b_max = data['b_max']
    try:
        save_img_path = save_path[:-4] + '.png'
        save_img_list = []
        for v in range(image_tensor.shape[0]):
            save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(),
                                     (1, 2, 0)) * 0.5 +
                        0.5)[:, :, ::-1] * 255.0
            save_img_list.append(save_img)
        save_img = np.concatenate(save_img_list, axis=1)
        Image.fromarray(np.uint8(save_img[:, :, ::-1])).save(save_img_path)

        verts, faces, _, _ = reconstruction_faster(net, cuda, calib_tensor,
                                                   resolution, b_min, b_max)
        verts_tensor = torch.from_numpy(
            verts.T).unsqueeze(0).to(device=cuda).float()
        xyz_tensor = net.projection(verts_tensor, calib_tensor[:1])
        uv = xyz_tensor[:, :2, :]
        color = netG.index(image_tensor[:1], uv).detach().cpu().numpy()[0].T
        color = color * 0.5 + 0.5
        save_obj_mesh_with_color(save_path, verts, faces, color)
    except Exception as e:
        print(e)
        print('Can not create marching cubes at this time.')
        verts, faces, color = None, None, None
    return verts, faces, color


def gen_mesh_color(opt, netG, netC, cuda, data, save_path, use_octree=True):
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    netG.filter(image_tensor)
    netC.filter(image_tensor)
    netC.attach(netG.get_im_feat())

    b_min = data['b_min']
    b_max = data['b_max']
    try:
        save_img_path = save_path[:-4] + '.png'
        save_img_list = []
        for v in range(image_tensor.shape[0]):
            save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(),
                                     (1, 2, 0)) * 0.5 +
                        0.5)[:, :, ::-1] * 255.0
            save_img_list.append(save_img)
        save_img = np.concatenate(save_img_list, axis=1)
        Image.fromarray(np.uint8(save_img[:, :, ::-1])).save(save_img_path)

        verts, faces, _, _ = reconstruction_faster(netG,
                                                   cuda,
                                                   calib_tensor,
                                                   opt.resolution,
                                                   b_min,
                                                   b_max,
                                                   use_octree=use_octree)

        # Now Getting colors
        verts_tensor = torch.from_numpy(
            verts.T).unsqueeze(0).to(device=cuda).float()
        verts_tensor = reshape_sample_tensor(verts_tensor, opt.num_views)
        color = np.zeros(verts.shape)
        interval = 10000
        for i in range(len(color) // interval):
            left = i * interval
            right = i * interval + interval
            if i == len(color) // interval - 1:
                right = -1
            netC.query(verts_tensor[:, :, left:right], calib_tensor)
            rgb = netC.get_preds()[0].detach().cpu().numpy() * 0.5 + 0.5
            color[left:right] = rgb.T

        save_obj_mesh_with_color(save_path, verts, faces, color)
    except Exception as e:
        print(e)
        print('Can not create marching cubes at this time.')
        verts, faces, color = None, None, None
    return verts, faces, color


def adjust_learning_rate(optimizer, epoch, lr, schedule, gamma):
    """Sets the learning rate to the initial LR decayed by schedule"""
    if epoch in schedule:
        lr *= gamma
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
    return lr


def compute_acc(pred, gt, thresh=0.5):
    '''
    return:
        IOU, precision, and recall
    '''
    with torch.no_grad():
        vol_pred = pred > thresh
        vol_gt = gt > thresh

        union = vol_pred | vol_gt
        inter = vol_pred & vol_gt

        true_pos = inter.sum().float()

        union = union.sum().float()
        if union == 0:
            union = 1
        vol_pred = vol_pred.sum().float()
        if vol_pred == 0:
            vol_pred = 1
        vol_gt = vol_gt.sum().float()
        if vol_gt == 0:
            vol_gt = 1
        return true_pos / union, true_pos / vol_pred, true_pos / vol_gt


# def calc_metrics(opt, net, cuda, dataset, num_tests,
#                  resolution=128, sampled_points=1000, use_kaolin=True):
#     if num_tests > len(dataset):
#         num_tests = len(dataset)
#     with torch.no_grad():
#         chamfer_arr, p2s_arr = [], []
#         for idx in tqdm(range(num_tests)):
#             data = dataset[idx * len(dataset) // num_tests]

#             verts, faces = gen_mesh_eval(opt, net, cuda, data, resolution)
#             if verts is None:
#                 continue

#             mesh_gt = trimesh.load(data['mesh_path'])
#             mesh_gt = mesh_gt.split(only_watertight=False)
#             comp_num = [mesh.vertices.shape[0] for mesh in mesh_gt]
#             mesh_gt = mesh_gt[comp_num.index(max(comp_num))]

#             mesh_pred = trimesh.Trimesh(verts, faces)

#             gt_surface_pts, _ = trimesh.sample.sample_surface_even(
#                 mesh_gt, sampled_points)
#             pred_surface_pts, _ = trimesh.sample.sample_surface_even(
#                 mesh_pred, sampled_points)

#             if use_kaolin and has_kaolin:
#                 kal_mesh_gt = kal.rep.TriangleMesh.from_tensors(
#                         torch.tensor(mesh_gt.vertices).float().to(device=cuda),
#                         torch.tensor(mesh_gt.faces).long().to(device=cuda))
#                 kal_mesh_pred = kal.rep.TriangleMesh.from_tensors(
#                     torch.tensor(mesh_pred.vertices).float().to(device=cuda),
#                     torch.tensor(mesh_pred.faces).long().to(device=cuda))

#                 kal_distance_0 = kal.metrics.mesh.point_to_surface(
#                     torch.tensor(pred_surface_pts).float().to(device=cuda), kal_mesh_gt)
#                 kal_distance_1 = kal.metrics.mesh.point_to_surface(
#                     torch.tensor(gt_surface_pts).float().to(device=cuda), kal_mesh_pred)

#                 dist_gt_pred = torch.sqrt(kal_distance_0).cpu().numpy()
#                 dist_pred_gt = torch.sqrt(kal_distance_1).cpu().numpy()
#             else:
#                 try:
#                     _, dist_pred_gt, _ = trimesh.proximity.closest_point(mesh_pred, gt_surface_pts)
#                     _, dist_gt_pred, _ = trimesh.proximity.closest_point(mesh_gt, pred_surface_pts)
#                 except Exception as e:
#                     print (e)
#                     continue

#             chamfer_dist = 0.5 * (dist_pred_gt.mean() + dist_gt_pred.mean())
#             p2s_dist = dist_pred_gt.mean()

#             chamfer_arr.append(chamfer_dist)
#             p2s_arr.append(p2s_dist)

#     return np.average(chamfer_arr), np.average(p2s_arr)


def calc_error(opt, net, cuda, dataset, num_tests):
    if num_tests > len(dataset):
        num_tests = len(dataset)
    with torch.no_grad():
        erorr_arr, IOU_arr, prec_arr, recall_arr = [], [], [], []
        for idx in tqdm(range(num_tests)):
            data = dataset[idx * len(dataset) // num_tests]
            # retrieve the data
            image_tensor = data['img'].to(device=cuda)
            calib_tensor = data['calib'].to(device=cuda)
            sample_tensor = data['samples'].to(device=cuda).unsqueeze(0)
            if opt.num_views > 1:
                sample_tensor = reshape_sample_tensor(sample_tensor,
                                                      opt.num_views)
            label_tensor = data['labels'].to(device=cuda).unsqueeze(0)

            res, error = net.forward(image_tensor,
                                     sample_tensor,
                                     calib_tensor,
                                     labels=label_tensor)

            IOU, prec, recall = compute_acc(res, label_tensor)

            # print(
            #     '{0}/{1} | Error: {2:06f} IOU: {3:06f} prec: {4:06f} recall: {5:06f}'
            #         .format(idx, num_tests, error.item(), IOU.item(), prec.item(), recall.item()))
            erorr_arr.append(error.item())
            IOU_arr.append(IOU.item())
            prec_arr.append(prec.item())
            recall_arr.append(recall.item())

    return np.average(erorr_arr), np.average(IOU_arr), np.average(
        prec_arr), np.average(recall_arr)


def calc_error_color(opt, netG, netC, cuda, dataset, num_tests):
    if num_tests > len(dataset):
        num_tests = len(dataset)
    with torch.no_grad():
        error_color_arr = []

        for idx in tqdm(range(num_tests)):
            data = dataset[idx * len(dataset) // num_tests]
            # retrieve the data
            image_tensor = data['img'].to(device=cuda)
            calib_tensor = data['calib'].to(device=cuda)
            color_sample_tensor = data['color_samples'].to(
                device=cuda).unsqueeze(0)

            if opt.num_views > 1:
                color_sample_tensor = reshape_sample_tensor(
                    color_sample_tensor, opt.num_views)

            rgb_tensor = data['rgbs'].to(device=cuda).unsqueeze(0)

            netG.filter(image_tensor)
            _, errorC = netC.forward(image_tensor,
                                     netG.get_im_feat(),
                                     color_sample_tensor,
                                     calib_tensor,
                                     labels=rgb_tensor)

            # print('{0}/{1} | Error inout: {2:06f} | Error color: {3:06f}'
            #       .format(idx, num_tests, errorG.item(), errorC.item()))
            error_color_arr.append(errorC.item())

    return np.average(error_color_arr)


# pytorch lightning training related fucntions


def query_func(opt, netG, features, points, proj_matrix=None):
    '''
        - points: size of (bz, N, 3)
        - proj_matrix: size of (bz, 4, 4)
    return: size of (bz, 1, N)
    '''
    assert len(points) == 1
    samples = points.repeat(opt.num_views, 1, 1)
    samples = samples.permute(0, 2, 1)  # [bz, 3, N]

    # view specific query
    if proj_matrix is not None:
        samples = orthogonal(samples, proj_matrix)

    calib_tensor = torch.stack([torch.eye(4).float()], dim=0).type_as(samples)

    preds = netG.query(features=features,
                       points=samples,
                       calibs=calib_tensor,
                       regressor=netG.if_regressor)

    if type(preds) is list:
        preds = preds[0]

    return preds


def isin(ar1, ar2):
    return (ar1[..., None] == ar2).any(-1)


def in1d(ar1, ar2):
    mask = ar2.new_zeros((max(ar1.max(), ar2.max()) + 1, ), dtype=torch.bool)
    mask[ar2.unique()] = True
    return mask[ar1]


def get_visibility(xy, z, faces):
    """get the visibility of vertices

    Args:
        xy (torch.tensor): [N,2]
        z (torch.tensor): [N,1]
        faces (torch.tensor): [N,3]
        size (int): resolution of rendered image
    """

    xyz = torch.cat((xy, -z), dim=1)
    xyz = (xyz + 1.0) / 2.0
    faces = faces.long()

    rasterizer = Pytorch3dRasterizer(image_size=2**12)
    meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...])
    raster_settings = rasterizer.raster_settings

    pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
        meshes_screen,
        image_size=raster_settings.image_size,
        blur_radius=raster_settings.blur_radius,
        faces_per_pixel=raster_settings.faces_per_pixel,
        bin_size=raster_settings.bin_size,
        max_faces_per_bin=raster_settings.max_faces_per_bin,
        perspective_correct=raster_settings.perspective_correct,
        cull_backfaces=raster_settings.cull_backfaces,
    )

    vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :])
    vis_mask = torch.zeros(size=(z.shape[0], 1))
    vis_mask[vis_vertices_id] = 1.0

    # print("------------------------\n")
    # print(f"keep points : {vis_mask.sum()/len(vis_mask)}")

    return vis_mask


def batch_mean(res, key):
    # recursive mean for multilevel dicts
    return torch.stack([
        x[key] if isinstance(x, dict) else batch_mean(x, key) for x in res
    ]).mean()


def tf_log_convert(log_dict):
    new_log_dict = log_dict.copy()
    for k, v in log_dict.items():
        new_log_dict[k.replace("_", "/")] = v
        del new_log_dict[k]

    return new_log_dict


def bar_log_convert(log_dict, name=None, rot=None):
    from decimal import Decimal

    new_log_dict = {}

    if name is not None:
        new_log_dict['name'] = name[0]
    if rot is not None:
        new_log_dict['rot'] = rot[0]

    for k, v in log_dict.items():
        color = "yellow"
        if 'loss' in k:
            color = "red"
            k = k.replace("loss", "L")
        elif 'acc' in k:
            color = "green"
            k = k.replace("acc", "A")
        elif 'iou' in k:
            color = "green"
            k = k.replace("iou", "I")
        elif 'prec' in k:
            color = "green"
            k = k.replace("prec", "P")
        elif 'recall' in k:
            color = "green"
            k = k.replace("recall", "R")

        if 'lr' not in k:
            new_log_dict[colored(k.split("_")[1],
                                 color)] = colored(f"{v:.3f}", color)
        else:
            new_log_dict[colored(k.split("_")[1],
                                 color)] = colored(f"{Decimal(str(v)):.1E}",
                                                   color)

    if 'loss' in new_log_dict.keys():
        del new_log_dict['loss']

    return new_log_dict


def accumulate(outputs, rot_num, split):

    hparam_log_dict = {}

    metrics = outputs[0].keys()
    datasets = split.keys()

    for dataset in datasets:
        for metric in metrics:
            keyword = f"hparam/{dataset}-{metric}"
            if keyword not in hparam_log_dict.keys():
                hparam_log_dict[keyword] = 0
            for idx in range(split[dataset][0] * rot_num,
                             split[dataset][1] * rot_num):
                hparam_log_dict[keyword] += outputs[idx][metric]
            hparam_log_dict[keyword] /= (split[dataset][1] -
                                         split[dataset][0]) * rot_num

    print(colored(hparam_log_dict, "green"))

    return hparam_log_dict


def calc_error_N(outputs, targets):
    """calculate the error of normal (IGR)

    Args:
        outputs (torch.tensor): [B, 3, N]
        target (torch.tensor): [B, N, 3]

    # manifold loss and grad_loss in IGR paper
    grad_loss = ((nonmnfld_grad.norm(2, dim=-1) - 1) ** 2).mean()
    normals_loss = ((mnfld_grad - normals).abs()).norm(2, dim=1).mean()

    Returns:
        torch.tensor: error of valid normals on the surface
    """
    # outputs = torch.tanh(-outputs.permute(0,2,1).reshape(-1,3))
    outputs = -outputs.permute(0, 2, 1).reshape(-1, 1)
    targets = targets.reshape(-1, 3)[:, 2:3]
    with_normals = targets.sum(dim=1).abs() > 0.0

    # eikonal loss
    grad_loss = ((outputs[with_normals].norm(2, dim=-1) - 1)**2).mean()
    # normals loss
    normal_loss = (outputs - targets)[with_normals].abs().norm(2, dim=1).mean()

    return grad_loss * 0.0 + normal_loss


def calc_knn_acc(preds, carn_verts, labels, pick_num):
    """calculate knn accuracy

    Args:
        preds (torch.tensor): [B, 3, N]
        carn_verts (torch.tensor): [SMPLX_V_num, 3]
        labels (torch.tensor): [B, N_knn, N]
    """
    N_knn_full = labels.shape[1]
    preds = preds.permute(0, 2, 1).reshape(-1, 3)
    labels = labels.permute(0, 2, 1).reshape(-1, N_knn_full)  # [BxN, num_knn]
    labels = labels[:, :pick_num]

    dist = torch.cdist(preds, carn_verts, p=2)  # [BxN, SMPL_V_num]
    knn = dist.topk(k=pick_num, dim=1, largest=False)[1]  # [BxN, num_knn]
    cat_mat = torch.sort(torch.cat((knn, labels), dim=1))[0]
    bool_col = torch.zeros_like(cat_mat)[:, 0]
    for i in range(pick_num * 2 - 1):
        bool_col += cat_mat[:, i] == cat_mat[:, i + 1]
    acc = (bool_col > 0).sum() / len(bool_col)

    return acc


def calc_acc_seg(output, target, num_multiseg):
    from pytorch_lightning.metrics import Accuracy
    return Accuracy()(output.reshape(-1, num_multiseg).cpu(),
                      target.flatten().cpu())


def add_watermark(imgs, titles):

    # Write some Text

    font = cv2.FONT_HERSHEY_SIMPLEX
    bottomLeftCornerOfText = (350, 50)
    bottomRightCornerOfText = (800, 50)
    fontScale = 1
    fontColor = (1.0, 1.0, 1.0)
    lineType = 2

    for i in range(len(imgs)):

        title = titles[i + 1]
        cv2.putText(imgs[i], title, bottomLeftCornerOfText, font, fontScale,
                    fontColor, lineType)

        if i == 0:
            cv2.putText(imgs[i], str(titles[i][0]), bottomRightCornerOfText,
                        font, fontScale, fontColor, lineType)

    result = np.concatenate(imgs, axis=0).transpose(2, 0, 1)

    return result


def make_test_gif(img_dir):

    if img_dir is not None and len(os.listdir(img_dir)) > 0:
        for dataset in os.listdir(img_dir):
            for subject in sorted(os.listdir(osp.join(img_dir, dataset))):
                img_lst = []
                im1 = None
                for file in sorted(
                        os.listdir(osp.join(img_dir, dataset, subject))):
                    if file[-3:] not in ['obj', 'gif']:
                        img_path = os.path.join(img_dir, dataset, subject,
                                                file)
                        if im1 == None:
                            im1 = Image.open(img_path)
                        else:
                            img_lst.append(Image.open(img_path))

                print(os.path.join(img_dir, dataset, subject, "out.gif"))
                im1.save(os.path.join(img_dir, dataset, subject, "out.gif"),
                         save_all=True,
                         append_images=img_lst,
                         duration=500,
                         loop=0)


def export_cfg(logger, cfg):

    cfg_export_file = osp.join(logger.save_dir, logger.name,
                               f"version_{logger.version}", "cfg.yaml")

    if not osp.exists(cfg_export_file):
        os.makedirs(osp.dirname(cfg_export_file), exist_ok=True)
        with open(cfg_export_file, "w+") as file:
            _ = yaml.dump(cfg, file)