Yuliang commited on
Commit
dbb034d
·
1 Parent(s): c5b04dc

add back normal map visualization

Browse files
Files changed (1) hide show
  1. apps/infer.py +16 -5
apps/infer.py CHANGED
@@ -269,26 +269,37 @@ def generate_model(in_path, model_type):
269
  os.makedirs(os.path.join(config_dict['out_dir'],
270
  cfg.name, "obj"), exist_ok=True)
271
 
272
- norm_pred = (
273
  ((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
274
  .detach()
275
  .cpu()
276
  .numpy()
277
  .astype(np.uint8)
278
  )
 
 
 
 
 
 
 
 
279
 
280
- norm_orig = unwrap(norm_pred, data)
 
 
281
  mask_orig = unwrap(
282
  np.repeat(
283
  data["mask"].permute(1, 2, 0).detach().cpu().numpy(), 3, axis=2
284
  ).astype(np.uint8),
285
  data,
286
  )
287
- rgb_norm = blend_rgb_norm(data["ori_image"], norm_orig, mask_orig)
 
288
 
289
  Image.fromarray(
290
  np.concatenate(
291
- [data["ori_image"].astype(np.uint8), rgb_norm], axis=1)
292
  ).save(os.path.join(config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png"))
293
 
294
  smpl_obj = trimesh.Trimesh(
@@ -448,7 +459,7 @@ def generate_model(in_path, model_type):
448
  dataset.render.load_meshes(
449
  verts_lst, faces_lst)
450
  dataset.render.get_rendered_video(
451
- [data["ori_image"], rgb_norm],
452
  os.path.join(config_dict['out_dir'], cfg.name,
453
  f"vid/{data['name']}_cloth.mp4"),
454
  )
 
269
  os.makedirs(os.path.join(config_dict['out_dir'],
270
  cfg.name, "obj"), exist_ok=True)
271
 
272
+ norm_pred_F = (
273
  ((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
274
  .detach()
275
  .cpu()
276
  .numpy()
277
  .astype(np.uint8)
278
  )
279
+
280
+ norm_pred_B = (
281
+ ((in_tensor["normal_B"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
282
+ .detach()
283
+ .cpu()
284
+ .numpy()
285
+ .astype(np.uint8)
286
+ )
287
 
288
+ norm_orig_F = unwrap(norm_pred_F, data)
289
+ norm_orig_B = unwrap(norm_pred_B, data)
290
+
291
  mask_orig = unwrap(
292
  np.repeat(
293
  data["mask"].permute(1, 2, 0).detach().cpu().numpy(), 3, axis=2
294
  ).astype(np.uint8),
295
  data,
296
  )
297
+ rgb_norm_F = blend_rgb_norm(data["ori_image"], norm_orig_F, mask_orig)
298
+ rgb_norm_B = blend_rgb_norm(data["ori_image"], norm_orig_B, mask_orig)
299
 
300
  Image.fromarray(
301
  np.concatenate(
302
+ [data["ori_image"].astype(np.uint8), rgb_norm_F, rgb_norm_B], axis=1)
303
  ).save(os.path.join(config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png"))
304
 
305
  smpl_obj = trimesh.Trimesh(
 
459
  dataset.render.load_meshes(
460
  verts_lst, faces_lst)
461
  dataset.render.get_rendered_video(
462
+ [data["ori_image"], rgb_norm_F, rgb_norm_B],
463
  os.path.join(config_dict['out_dir'], cfg.name,
464
  f"vid/{data['name']}_cloth.mp4"),
465
  )