File size: 795 Bytes
7ee056a
2c40cc9
7ee056a
 
49bdebc
7ee056a
45f20be
49bdebc
2c40cc9
7ee056a
49bdebc
 
7ee056a
49bdebc
 
7ee056a
49bdebc
2c40cc9
 
49bdebc
 
2c40cc9
7ee056a
49bdebc
2c40cc9
49bdebc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'classify_athlete']

# %% app.ipynb 1
import gradio as gr


# %% app.ipynb 2
from fastai.vision.all import *

# %% app.ipynb 3
learn = load_learner('model.pkl')

# %% app.ipynb 4
categories = {'Ronaldo', 'messi', 'Michael Jordan', 'Rafael Nadal', 'Roger Federer'}

def classify_athlete(img):
    pred,idx,probs = learn.predict(img)
    return dict(zip(categories, map(float,probs)))

# %% app.ipynb 6
image = gr.inputs.Image(shape = (192,192))
label = gr.outputs.Label()
examples = ['cr7.jpeg','messi.jpeg','michael_jordan.jpeg']

intf = gr.Interface(fn = classify_athlete,inputs = image, outputs = label, examples = examples)
intf.launch(inline = False)