Spaces:
Sleeping
Sleeping
Yunshansongbai
commited on
Commit
•
4585e41
1
Parent(s):
045a470
Upload 75 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +19 -0
- .ipynb_checkpoints/build.gradio-checkpoint.py +176 -0
- build.gradio.py +176 -0
- cluster/__init__.py +29 -0
- cluster/train_cluster.py +88 -0
- configs/config.json +95 -0
- data_utils.py +143 -0
- examples/instrumental/Counter_clockwise_Clock_instrumental.wav +3 -0
- examples/instrumental/blue_instrumental.wav +3 -0
- examples/instrumental/one_last_kiss_instrumental.wav +3 -0
- examples/song/Counter_clockwise_Clock.wav +3 -0
- examples/song/blue.wav +3 -0
- examples/song/one_last_kiss.wav +3 -0
- examples/vocals/Counter_clockwise_Clock_vocal.wav +3 -0
- examples/vocals/blue_vocal.wav +3 -0
- examples/vocals/one_last_kiss_vocal.wav +3 -0
- filelists/test.txt +2 -0
- filelists/train.txt +857 -0
- filelists/val.txt +2 -0
- flask_api.py +57 -0
- hubert/__init__.py +0 -0
- hubert/hubert4.0.onnx +3 -0
- hubert/hubert_model.py +226 -0
- hubert/hubert_model_onnx.py +217 -0
- inference/__init__.py +1 -0
- inference/chunks_temp.json +1 -0
- inference/infer_tool.py +255 -0
- inference/infer_tool_grad.py +161 -0
- inference/slicer.py +142 -0
- inference_main.py +108 -0
- logs/44k/config.json +95 -0
- logs/44k/eval/vdlrecords.1690034156.log +0 -0
- logs/44k/train.log +8 -0
- logs/44k/vdlrecords.1690034156.log +0 -0
- models.py +556 -0
- modules/__init__.py +1 -0
- modules/attentions.py +377 -0
- modules/commons.py +192 -0
- modules/losses.py +61 -0
- modules/mel_processing.py +111 -0
- modules/modules.py +351 -0
- output_2stems/blue-instrumental.wav +3 -0
- output_2stems/blue-vocals.wav +3 -0
- output_2stems/temp-instrumental.wav +3 -0
- output_2stems/temp-vocals.wav +3 -0
- paddle_infer_shape.py +88 -0
- preprocess_flist_config.py +84 -0
- preprocess_hubert_f0.py +62 -0
- raw/1.wav +3 -0
- requirements.txt +16 -0
.gitattributes
CHANGED
@@ -33,3 +33,22 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/instrumental/blue_instrumental.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/instrumental/Counter_clockwise_Clock_instrumental.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/instrumental/one_last_kiss_instrumental.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
+
examples/song/blue.wav filter=lfs diff=lfs merge=lfs -text
|
40 |
+
examples/song/Counter_clockwise_Clock.wav filter=lfs diff=lfs merge=lfs -text
|
41 |
+
examples/song/one_last_kiss.wav filter=lfs diff=lfs merge=lfs -text
|
42 |
+
examples/vocals/blue_vocal.wav filter=lfs diff=lfs merge=lfs -text
|
43 |
+
examples/vocals/Counter_clockwise_Clock_vocal.wav filter=lfs diff=lfs merge=lfs -text
|
44 |
+
examples/vocals/one_last_kiss_vocal.wav filter=lfs diff=lfs merge=lfs -text
|
45 |
+
output_2stems/blue-instrumental.wav filter=lfs diff=lfs merge=lfs -text
|
46 |
+
output_2stems/blue-vocals.wav filter=lfs diff=lfs merge=lfs -text
|
47 |
+
output_2stems/temp-instrumental.wav filter=lfs diff=lfs merge=lfs -text
|
48 |
+
output_2stems/temp-vocals.wav filter=lfs diff=lfs merge=lfs -text
|
49 |
+
raw/1.wav filter=lfs diff=lfs merge=lfs -text
|
50 |
+
spleeter/2stems_instrumental.pdparams filter=lfs diff=lfs merge=lfs -text
|
51 |
+
spleeter/2stems_vocals.pdparams filter=lfs diff=lfs merge=lfs -text
|
52 |
+
trained_models/纳西妲.pdparams filter=lfs diff=lfs merge=lfs -text
|
53 |
+
trained_models/派蒙.pdparams filter=lfs diff=lfs merge=lfs -text
|
54 |
+
trained_models/YH.pdparams filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/build.gradio-checkpoint.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile
|
8 |
+
from inference.infer_tool import Svc
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import paddle
|
12 |
+
import requests
|
13 |
+
import utils
|
14 |
+
from spleeter import Separator
|
15 |
+
|
16 |
+
build_dir=os.getcwd()
|
17 |
+
if build_dir == "/home/aistudio":
|
18 |
+
build_dir += "/build"
|
19 |
+
|
20 |
+
model_dir=build_dir+'/trained_models'
|
21 |
+
|
22 |
+
model_list_path = model_dir + "/model_list.txt"
|
23 |
+
|
24 |
+
# 筛选出文件夹
|
25 |
+
models = []
|
26 |
+
for filename in os.listdir(model_dir):
|
27 |
+
# 判断文件名是否以 '.pdparams' 结尾,并且不包含后缀部分
|
28 |
+
if filename.endswith('.pdparams') and os.path.splitext(filename)[0].isalpha():
|
29 |
+
models.append(os.path.splitext(filename)[0])
|
30 |
+
cache_model = {}
|
31 |
+
|
32 |
+
def reboot():
|
33 |
+
os.execv(sys.executable, ['python'] + sys.argv)
|
34 |
+
|
35 |
+
def separate_fn(song_input):
|
36 |
+
try:
|
37 |
+
if song_input is None:
|
38 |
+
return "请上传歌曲",None,None,None,None
|
39 |
+
params_2stems = {
|
40 |
+
'sample_rate': 44100,
|
41 |
+
'frame_length': 4096,
|
42 |
+
'frame_step': 1024,
|
43 |
+
'T': 512,
|
44 |
+
'F': 1024,
|
45 |
+
'num_instruments': ['vocals', 'instrumental'],
|
46 |
+
'output_dir': build_dir+'/output_2stems',
|
47 |
+
'checkpoint_path': build_dir+'/spleeter',
|
48 |
+
'use_elu': False}
|
49 |
+
sampling_rate, song = song_input
|
50 |
+
soundfile.write("temp.wav", song, sampling_rate, format="wav")
|
51 |
+
# 初始化分离器
|
52 |
+
sep = Separator(params_2stems)
|
53 |
+
sep.separate('temp.wav')
|
54 |
+
vocal_path = params_2stems["output_dir"]+"/temp-vocals.wav"
|
55 |
+
instrumental_path = params_2stems["output_dir"]+"/temp-instrumental.wav"
|
56 |
+
return "分离成功,请继续前往体验【转换】和【混音】",vocal_path,instrumental_path,vocal_path,instrumental_path
|
57 |
+
except Exception as e:
|
58 |
+
import traceback
|
59 |
+
return traceback.format_exc() , None,None,None,None
|
60 |
+
|
61 |
+
|
62 |
+
def convert_fn(model_name, input_audio,input_audio_micro, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
|
63 |
+
try:
|
64 |
+
if model_name in cache_model:
|
65 |
+
model = cache_model[model_name]
|
66 |
+
else:
|
67 |
+
if paddle.device.is_compiled_with_cuda()==False and len(cache_model)!=0:
|
68 |
+
return f"目前运行环境为CPU,受制于平台算力,每次启动本项目只允许加载1个模型,当前已加载{next(iter(cache_model))}",None,None
|
69 |
+
config_path = f"{build_dir}/trained_models/config.json"
|
70 |
+
model = Svc(f"{build_dir}/trained_models/{model_name}.pdparams", config_path,mode="test")
|
71 |
+
cache_model[model_name] = model
|
72 |
+
if input_audio is None and input_audio_micro is None:
|
73 |
+
return "请上传音频", None,None
|
74 |
+
if input_audio_micro is not None:
|
75 |
+
input_audio = input_audio_micro
|
76 |
+
sampling_rate, audio = input_audio
|
77 |
+
duration = audio.shape[0] / sampling_rate
|
78 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
79 |
+
if len(audio.shape) > 1:
|
80 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
81 |
+
if sampling_rate != 16000:
|
82 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
83 |
+
print(audio.shape)
|
84 |
+
out_wav_path = "temp.wav"
|
85 |
+
soundfile.write(out_wav_path, audio, 16000, format="wav")
|
86 |
+
print(cluster_ratio, auto_f0, noise_scale)
|
87 |
+
_audio = model.slice_inference(out_wav_path, model_name, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
|
88 |
+
del model
|
89 |
+
return "转换成功,请继续前往体验【混音】", (44100, _audio),(44100, _audio)
|
90 |
+
except Exception as e:
|
91 |
+
import traceback
|
92 |
+
return traceback.format_exc() , None,None
|
93 |
+
|
94 |
+
def compose_fn(input_vocal,input_instrumental,mixing_ratio=0.5):
|
95 |
+
try:
|
96 |
+
outlog = "混音成功"
|
97 |
+
if input_vocal is None:
|
98 |
+
return "请上传人声", None
|
99 |
+
if input_instrumental is None:
|
100 |
+
return "请上传伴奏", None
|
101 |
+
vocal_sampling_rate, vocal = input_vocal
|
102 |
+
vocal_duration = vocal.shape[0] / vocal_sampling_rate
|
103 |
+
vocal = (vocal / np.iinfo(vocal.dtype).max).astype(np.float32)
|
104 |
+
if len(vocal.shape) > 1:
|
105 |
+
vocal = librosa.to_mono(vocal.transpose(1, 0))
|
106 |
+
if vocal_sampling_rate != 44100:
|
107 |
+
vocal = librosa.resample(vocal, orig_sr=vocal_sampling_rate, target_sr=44100)
|
108 |
+
|
109 |
+
instrumental_sampling_rate, instrumental = input_instrumental
|
110 |
+
instrumental_duration = instrumental.shape[0] / instrumental_sampling_rate
|
111 |
+
instrumental = (instrumental / np.iinfo(instrumental.dtype).max).astype(np.float32)
|
112 |
+
if len(instrumental.shape) > 1:
|
113 |
+
instrumental = librosa.to_mono(instrumental.transpose(1, 0))
|
114 |
+
if instrumental_sampling_rate != 44100:
|
115 |
+
instrumental = librosa.resample(instrumental, orig_sr=instrumental_sampling_rate, target_sr=44100)
|
116 |
+
if len(vocal)!=len(instrumental):
|
117 |
+
min_length = min(len(vocal),len(instrumental))
|
118 |
+
instrumental = instrumental[:min_length]
|
119 |
+
vocal = vocal[:min_length]
|
120 |
+
outlog = "人声伴奏长度不一致,已自动截断较长的音频"
|
121 |
+
|
122 |
+
mixed_audio = (1 - mixing_ratio) * vocal + mixing_ratio * instrumental
|
123 |
+
mixed_audio_data = mixed_audio.astype(np.float32)
|
124 |
+
return outlog,(44100,mixed_audio_data)
|
125 |
+
except Exception as e:
|
126 |
+
import traceback
|
127 |
+
return traceback.format_exc() , None
|
128 |
+
|
129 |
+
|
130 |
+
app = gr.Blocks()
|
131 |
+
with app:
|
132 |
+
gr.Markdown('<h1 style="text-align: center;">SVC歌声转换全流程体验(伴奏分离,转换,混音)</h1>')
|
133 |
+
btn_reboot = gr.Button("重启程序", variant="primary")
|
134 |
+
with gr.Tabs() as tabs:
|
135 |
+
with gr.TabItem("人声伴奏分离"):
|
136 |
+
gr.Markdown('<p>该项目人声分离的效果弱于UVR5,如自备分离好的伴奏和人声可跳过该步骤</p>')
|
137 |
+
song_input = gr.Audio(label="上传歌曲(tips:上传后点击右上角✏可以进行歌曲剪辑)",interactive=True)
|
138 |
+
gr.Examples(examples=[build_dir+"/examples/song/blue.wav",build_dir+"/examples/song/Counter_clockwise_Clock.wav",build_dir+"/examples/song/one_last_kiss.wav"],inputs=song_input,label="歌曲样例")
|
139 |
+
|
140 |
+
btn_separate = gr.Button("人声伴奏分离", variant="primary")
|
141 |
+
text_output1 = gr.Textbox(label="输出信息")
|
142 |
+
vocal_output1 = gr.Audio(label="输出人声",interactive=False)
|
143 |
+
instrumental_output1 = gr.Audio(label="输出伴奏",interactive=False)
|
144 |
+
with gr.TabItem("转换"):
|
145 |
+
model_name = gr.Dropdown(label="模型", choices=models, value="纳西妲")
|
146 |
+
vocal_input1 = gr.Audio(label="上传人声",interactive=True)
|
147 |
+
gr.Examples(examples=[build_dir+"/examples/vocals/blue_vocal.wav",build_dir+"/examples/vocals/Counter_clockwise_Clock_vocal.wav",build_dir+"/examples/vocals/one_last_kiss_vocal.wav"],inputs=vocal_input1,label="人声样例")
|
148 |
+
btn_use_separate = gr.Button("使用【人声伴奏分离】分离的人声")
|
149 |
+
micro_input = gr.Audio(label="麦克风输入(优先于上传的人声)",source="microphone",interactive=True)
|
150 |
+
vc_transform = gr.Number(label="变调(半音数量,升八度12降八度-12)", value=0)
|
151 |
+
cluster_ratio = gr.Number(label="聚类模型混合比例", value=0,visible=False)
|
152 |
+
auto_f0 = gr.Checkbox(label="自动预测音高(转换歌声时不要打开,会严重跑调)", value=False)
|
153 |
+
slice_db = gr.Number(label="静音分贝阈值(嘈杂的音频可以-30,干声保留呼吸可以-50)", value=-50)
|
154 |
+
noise_scale = gr.Number(label="noise_scale", value=0.2)
|
155 |
+
btn_convert = gr.Button("转换", variant="primary")
|
156 |
+
text_output2 = gr.Textbox(label="输出信息")
|
157 |
+
vc_output2 = gr.Audio(label="输出音频",interactive=False)
|
158 |
+
|
159 |
+
with gr.TabItem("混音"):
|
160 |
+
vocal_input2 = gr.Audio(label="上传人声",interactive=True)
|
161 |
+
btn_use_convert = gr.Button("使用【转换】输出的人声")
|
162 |
+
instrumental_input1 = gr.Audio(label="上传伴奏")
|
163 |
+
gr.Examples(examples=[build_dir+"/examples/instrumental/blue_instrumental.wav",build_dir+"/examples/instrumental/Counter_clockwise_Clock_instrumental.wav",build_dir+"/examples/instrumental/one_last_kiss_instrumental.wav"],inputs=instrumental_input1,label="伴奏样例")
|
164 |
+
btn_use_separate2 = gr.Button("使用【人声伴奏分离】分离的伴奏")
|
165 |
+
mixing_ratio = gr.Slider(0, 1, value=0.75,step=0.01,label="混音比例(人声:伴奏)", info="人声:伴奏")
|
166 |
+
btn_compose = gr.Button("混音", variant="primary")
|
167 |
+
text_output3 = gr.Textbox(label="输出信息")
|
168 |
+
song_output = gr.Audio(label="输出歌曲",interactive=False)
|
169 |
+
btn_separate.click(separate_fn, song_input, [text_output1, vocal_output1,instrumental_output1,vocal_input1,instrumental_input1])
|
170 |
+
btn_convert.click(convert_fn, [model_name, vocal_input1,micro_input,vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [text_output2, vc_output2,vocal_input2])
|
171 |
+
btn_reboot.click(reboot)
|
172 |
+
btn_use_convert.click(lambda x:x,vc_output2,vocal_input2)
|
173 |
+
btn_use_separate.click(lambda x:x,vocal_output1,vocal_input1)
|
174 |
+
btn_use_separate2.click(lambda x:x,instrumental_output1,instrumental_input1)
|
175 |
+
|
176 |
+
app.launch()
|
build.gradio.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile
|
8 |
+
from inference.infer_tool import Svc
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import paddle
|
12 |
+
import requests
|
13 |
+
import utils
|
14 |
+
from spleeter import Separator
|
15 |
+
|
16 |
+
build_dir=os.getcwd()
|
17 |
+
if build_dir == "/home/aistudio":
|
18 |
+
build_dir += "/build"
|
19 |
+
|
20 |
+
model_dir=build_dir+'/trained_models'
|
21 |
+
|
22 |
+
model_list_path = model_dir + "/model_list.txt"
|
23 |
+
|
24 |
+
# 筛选出文件夹
|
25 |
+
models = []
|
26 |
+
for filename in os.listdir(model_dir):
|
27 |
+
# 判断文件名是否以 '.pdparams' 结尾,并且不包含后缀部分
|
28 |
+
if filename.endswith('.pdparams') and os.path.splitext(filename)[0].isalpha():
|
29 |
+
models.append(os.path.splitext(filename)[0])
|
30 |
+
cache_model = {}
|
31 |
+
|
32 |
+
def reboot():
|
33 |
+
os._exit(0)
|
34 |
+
|
35 |
+
def separate_fn(song_input):
|
36 |
+
try:
|
37 |
+
if song_input is None:
|
38 |
+
return "请上传歌曲",None,None,None,None
|
39 |
+
params_2stems = {
|
40 |
+
'sample_rate': 44100,
|
41 |
+
'frame_length': 4096,
|
42 |
+
'frame_step': 1024,
|
43 |
+
'T': 512,
|
44 |
+
'F': 1024,
|
45 |
+
'num_instruments': ['vocals', 'instrumental'],
|
46 |
+
'output_dir': build_dir+'/output_2stems',
|
47 |
+
'checkpoint_path': build_dir+'/spleeter',
|
48 |
+
'use_elu': False}
|
49 |
+
sampling_rate, song = song_input
|
50 |
+
soundfile.write("temp.wav", song, sampling_rate, format="wav")
|
51 |
+
# 初始化分离器
|
52 |
+
sep = Separator(params_2stems)
|
53 |
+
sep.separate('temp.wav')
|
54 |
+
vocal_path = params_2stems["output_dir"]+"/temp-vocals.wav"
|
55 |
+
instrumental_path = params_2stems["output_dir"]+"/temp-instrumental.wav"
|
56 |
+
return "分离成功,请继续前往体验【转换】和【混音】",vocal_path,instrumental_path,vocal_path,instrumental_path
|
57 |
+
except Exception as e:
|
58 |
+
import traceback
|
59 |
+
return traceback.format_exc() , None,None,None,None
|
60 |
+
|
61 |
+
|
62 |
+
def convert_fn(model_name, input_audio,input_audio_micro, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
|
63 |
+
try:
|
64 |
+
if model_name in cache_model:
|
65 |
+
model = cache_model[model_name]
|
66 |
+
else:
|
67 |
+
if paddle.device.is_compiled_with_cuda()==False and len(cache_model)!=0:
|
68 |
+
return f"目前运行环境为CPU,受制于平台算力,每次启动本项目只允许加载1个模型,当前已加载{next(iter(cache_model))}",None,None
|
69 |
+
config_path = f"{build_dir}/trained_models/config.json"
|
70 |
+
model = Svc(f"{build_dir}/trained_models/{model_name}.pdparams", config_path,mode="test")
|
71 |
+
cache_model[model_name] = model
|
72 |
+
if input_audio is None and input_audio_micro is None:
|
73 |
+
return "请上传音频", None,None
|
74 |
+
if input_audio_micro is not None:
|
75 |
+
input_audio = input_audio_micro
|
76 |
+
sampling_rate, audio = input_audio
|
77 |
+
duration = audio.shape[0] / sampling_rate
|
78 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
79 |
+
if len(audio.shape) > 1:
|
80 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
81 |
+
if sampling_rate != 16000:
|
82 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
83 |
+
print(audio.shape)
|
84 |
+
out_wav_path = "temp.wav"
|
85 |
+
soundfile.write(out_wav_path, audio, 16000, format="wav")
|
86 |
+
print(cluster_ratio, auto_f0, noise_scale)
|
87 |
+
_audio = model.slice_inference(out_wav_path, model_name, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
|
88 |
+
del model
|
89 |
+
return "转换成功,请继续前往体验【混音】", (44100, _audio),(44100, _audio)
|
90 |
+
except Exception as e:
|
91 |
+
import traceback
|
92 |
+
return traceback.format_exc() , None,None
|
93 |
+
|
94 |
+
def compose_fn(input_vocal,input_instrumental,mixing_ratio=0.5):
|
95 |
+
try:
|
96 |
+
outlog = "混音成功"
|
97 |
+
if input_vocal is None:
|
98 |
+
return "请上传人声", None
|
99 |
+
if input_instrumental is None:
|
100 |
+
return "请上传伴奏", None
|
101 |
+
vocal_sampling_rate, vocal = input_vocal
|
102 |
+
vocal_duration = vocal.shape[0] / vocal_sampling_rate
|
103 |
+
vocal = (vocal / np.iinfo(vocal.dtype).max).astype(np.float32)
|
104 |
+
if len(vocal.shape) > 1:
|
105 |
+
vocal = librosa.to_mono(vocal.transpose(1, 0))
|
106 |
+
if vocal_sampling_rate != 44100:
|
107 |
+
vocal = librosa.resample(vocal, orig_sr=vocal_sampling_rate, target_sr=44100)
|
108 |
+
|
109 |
+
instrumental_sampling_rate, instrumental = input_instrumental
|
110 |
+
instrumental_duration = instrumental.shape[0] / instrumental_sampling_rate
|
111 |
+
instrumental = (instrumental / np.iinfo(instrumental.dtype).max).astype(np.float32)
|
112 |
+
if len(instrumental.shape) > 1:
|
113 |
+
instrumental = librosa.to_mono(instrumental.transpose(1, 0))
|
114 |
+
if instrumental_sampling_rate != 44100:
|
115 |
+
instrumental = librosa.resample(instrumental, orig_sr=instrumental_sampling_rate, target_sr=44100)
|
116 |
+
if len(vocal)!=len(instrumental):
|
117 |
+
min_length = min(len(vocal),len(instrumental))
|
118 |
+
instrumental = instrumental[:min_length]
|
119 |
+
vocal = vocal[:min_length]
|
120 |
+
outlog = "人声伴奏长度不一致,已自动截断较长的音频"
|
121 |
+
|
122 |
+
mixed_audio = (1 - mixing_ratio) * vocal + mixing_ratio * instrumental
|
123 |
+
mixed_audio_data = mixed_audio.astype(np.float32)
|
124 |
+
return outlog,(44100,mixed_audio_data)
|
125 |
+
except Exception as e:
|
126 |
+
import traceback
|
127 |
+
return traceback.format_exc() , None
|
128 |
+
|
129 |
+
|
130 |
+
app = gr.Blocks()
|
131 |
+
with app:
|
132 |
+
gr.Markdown('<h1 style="text-align: center;">SVC歌声转换全流程体验(伴奏分离,转换,混音)</h1>')
|
133 |
+
btn_reboot = gr.Button("重启程序", variant="primary")
|
134 |
+
with gr.Tabs() as tabs:
|
135 |
+
with gr.TabItem("人声伴奏分离"):
|
136 |
+
gr.Markdown('<p>该项目人声分离的效果弱于UVR5,如自备分离好的伴奏和人声可跳过该步骤</p>')
|
137 |
+
song_input = gr.Audio(label="上传歌曲(tips:上传后点击右上角✏可以进行歌曲剪辑)",interactive=True)
|
138 |
+
gr.Examples(examples=[build_dir+"/examples/song/blue.wav",build_dir+"/examples/song/Counter_clockwise_Clock.wav",build_dir+"/examples/song/one_last_kiss.wav"],inputs=song_input,label="歌曲样例")
|
139 |
+
|
140 |
+
btn_separate = gr.Button("人声伴奏分离", variant="primary")
|
141 |
+
text_output1 = gr.Textbox(label="输出信息")
|
142 |
+
vocal_output1 = gr.Audio(label="输出人声",interactive=False)
|
143 |
+
instrumental_output1 = gr.Audio(label="输出伴奏",interactive=False)
|
144 |
+
with gr.TabItem("转换"):
|
145 |
+
model_name = gr.Dropdown(label="模型", choices=models, value="纳西妲")
|
146 |
+
vocal_input1 = gr.Audio(label="上传人声",interactive=True)
|
147 |
+
gr.Examples(examples=[build_dir+"/examples/vocals/blue_vocal.wav",build_dir+"/examples/vocals/Counter_clockwise_Clock_vocal.wav",build_dir+"/examples/vocals/one_last_kiss_vocal.wav"],inputs=vocal_input1,label="人声样例")
|
148 |
+
btn_use_separate = gr.Button("使用【人声伴奏分离】分离的人声")
|
149 |
+
micro_input = gr.Audio(label="麦克风输入(优先于上传的人声)",source="microphone",interactive=True)
|
150 |
+
vc_transform = gr.Number(label="变调(半音数量,升八度12降八度-12)", value=0)
|
151 |
+
cluster_ratio = gr.Number(label="聚类模型混合比例", value=0,visible=False)
|
152 |
+
auto_f0 = gr.Checkbox(label="自动预测音高(转换歌声时不要打开,会严重跑调)", value=False)
|
153 |
+
slice_db = gr.Number(label="静音分贝阈值(嘈杂的音频可以-30,干声保留呼吸可以-50)", value=-50)
|
154 |
+
noise_scale = gr.Number(label="noise_scale", value=0.2)
|
155 |
+
btn_convert = gr.Button("转换", variant="primary")
|
156 |
+
text_output2 = gr.Textbox(label="输出信息")
|
157 |
+
vc_output2 = gr.Audio(label="输出音频",interactive=False)
|
158 |
+
|
159 |
+
with gr.TabItem("混音"):
|
160 |
+
vocal_input2 = gr.Audio(label="上传人声",interactive=True)
|
161 |
+
btn_use_convert = gr.Button("使用【转换】输出的人声")
|
162 |
+
instrumental_input1 = gr.Audio(label="上传伴奏")
|
163 |
+
gr.Examples(examples=[build_dir+"/examples/instrumental/blue_instrumental.wav",build_dir+"/examples/instrumental/Counter_clockwise_Clock_instrumental.wav",build_dir+"/examples/instrumental/one_last_kiss_instrumental.wav"],inputs=instrumental_input1,label="伴奏样例")
|
164 |
+
btn_use_separate2 = gr.Button("使用【人声伴奏分离】分离的伴奏")
|
165 |
+
mixing_ratio = gr.Slider(0, 1, value=0.75,step=0.01,label="混音比例(人声:伴奏)", info="人声:伴奏")
|
166 |
+
btn_compose = gr.Button("混音", variant="primary")
|
167 |
+
text_output3 = gr.Textbox(label="输出信息")
|
168 |
+
song_output = gr.Audio(label="输出歌曲",interactive=False)
|
169 |
+
btn_separate.click(separate_fn, song_input, [text_output1, vocal_output1,instrumental_output1,vocal_input1,instrumental_input1])
|
170 |
+
btn_convert.click(convert_fn, [model_name, vocal_input1,micro_input,vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [text_output2, vc_output2,vocal_input2])
|
171 |
+
btn_reboot.click(reboot)
|
172 |
+
btn_use_convert.click(lambda x:x,vc_output2,vocal_input2)
|
173 |
+
btn_use_separate.click(lambda x:x,vocal_output1,vocal_input1)
|
174 |
+
btn_use_separate2.click(lambda x:x,instrumental_output1,instrumental_input1)
|
175 |
+
|
176 |
+
app.launch()
|
cluster/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import paddle
|
3 |
+
from sklearn.cluster import KMeans
|
4 |
+
|
5 |
+
def get_cluster_model(ckpt_path:str):
|
6 |
+
checkpoint = paddle.load(ckpt_path)
|
7 |
+
kmeans_dict = {}
|
8 |
+
for spk, ckpt in checkpoint.items():
|
9 |
+
km = KMeans(ckpt["n_features_in_"])
|
10 |
+
km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
|
11 |
+
km.__dict__["_n_threads"] = ckpt["_n_threads"]
|
12 |
+
km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
|
13 |
+
kmeans_dict[spk] = km
|
14 |
+
return kmeans_dict
|
15 |
+
|
16 |
+
def get_cluster_result(model, x, speaker):
|
17 |
+
"""
|
18 |
+
x: np.array [t, 256]
|
19 |
+
return cluster class result
|
20 |
+
"""
|
21 |
+
return model[speaker].predict(x)
|
22 |
+
|
23 |
+
def get_cluster_center_result(model, x,speaker):
|
24 |
+
"""x: np.array [t, 256]"""
|
25 |
+
predict = model[speaker].predict(x)
|
26 |
+
return model[speaker].cluster_centers_[predict]
|
27 |
+
|
28 |
+
def get_center(model, x,speaker):
|
29 |
+
return model[speaker].cluster_centers_[x]
|
cluster/train_cluster.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from glob import glob
|
3 |
+
from pathlib import Path
|
4 |
+
import paddle
|
5 |
+
import logging
|
6 |
+
import argparse
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.cluster import KMeans, MiniBatchKMeans
|
9 |
+
import tqdm
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
import time
|
13 |
+
import random
|
14 |
+
|
15 |
+
def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
|
16 |
+
|
17 |
+
logger.info(f"正在从{in_dir}加载特征")
|
18 |
+
features = []
|
19 |
+
nums = 0
|
20 |
+
for path in tqdm.tqdm(in_dir.glob("*.soft.pdtensor")):
|
21 |
+
path = str(path)
|
22 |
+
features.append(paddle.load(path).squeeze(0).numpy().T)
|
23 |
+
# print(features[-1].shape)
|
24 |
+
features = np.concatenate(features, axis=0)
|
25 |
+
print(nums, features.nbytes/ 1024**2, "MB , 形状:",features.shape, features.dtype)
|
26 |
+
features = features.astype(np.float32)
|
27 |
+
logger.info(f"聚类特征的形状:{features.shape}")
|
28 |
+
t = time.time()
|
29 |
+
if use_minibatch:
|
30 |
+
kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
|
31 |
+
else:
|
32 |
+
kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
|
33 |
+
print(time.time()-t, "s")
|
34 |
+
|
35 |
+
x = {
|
36 |
+
"n_features_in_": kmeans.n_features_in_,
|
37 |
+
"_n_threads": kmeans._n_threads,
|
38 |
+
"cluster_centers_": kmeans.cluster_centers_,
|
39 |
+
}
|
40 |
+
print("结束")
|
41 |
+
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
|
47 |
+
parser = argparse.ArgumentParser()
|
48 |
+
parser.add_argument('--dataset', type=Path, default="./dataset/44k",
|
49 |
+
help='path of training data directory')
|
50 |
+
parser.add_argument('--output', type=Path, default="logs/44k",
|
51 |
+
help='path of model output directory')
|
52 |
+
|
53 |
+
args = parser.parse_args()
|
54 |
+
|
55 |
+
checkpoint_dir = args.output
|
56 |
+
dataset = args.dataset
|
57 |
+
n_clusters = 10000
|
58 |
+
|
59 |
+
ckpt = {}
|
60 |
+
for spk in os.listdir(dataset):
|
61 |
+
if os.path.isdir(dataset/spk):
|
62 |
+
print(f"正在给{spk}训练kmeans中……")
|
63 |
+
in_dir = dataset/spk
|
64 |
+
x = train_cluster(in_dir, n_clusters, verbose=False)
|
65 |
+
ckpt[spk] = x
|
66 |
+
|
67 |
+
checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pdparams"
|
68 |
+
checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
|
69 |
+
paddle.save(
|
70 |
+
ckpt,
|
71 |
+
str(checkpoint_path),
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
# import cluster
|
76 |
+
# for spk in tqdm.tqdm(os.listdir("dataset")):
|
77 |
+
# if os.path.isdir(f"dataset/{spk}"):
|
78 |
+
# print(f"start kmeans inference for {spk}...")
|
79 |
+
# for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
|
80 |
+
# mel_path = feature_path.replace(".discrete.npy",".mel.npy")
|
81 |
+
# mel_spectrogram = np.load(mel_path)
|
82 |
+
# feature_len = mel_spectrogram.shape[-1]
|
83 |
+
# c = np.load(feature_path)
|
84 |
+
# c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
|
85 |
+
# feature = c.T
|
86 |
+
# feature_class = cluster.get_cluster_result(feature, spk)
|
87 |
+
# np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
|
88 |
+
|
configs/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 800,
|
4 |
+
"eval_interval": 400,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 114514,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-05,
|
13 |
+
"batch_size": 2,
|
14 |
+
"fp16_run": true,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 10240,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"use_sr": true,
|
22 |
+
"max_speclen": 512,
|
23 |
+
"port": "8001",
|
24 |
+
"keep_ckpts": 5
|
25 |
+
},
|
26 |
+
"data": {
|
27 |
+
"training_files": "filelists/train.txt",
|
28 |
+
"validation_files": "filelists/val.txt",
|
29 |
+
"max_wav_value": 32768.0,
|
30 |
+
"sampling_rate": 44100,
|
31 |
+
"filter_length": 2048,
|
32 |
+
"hop_length": 512,
|
33 |
+
"win_length": 2048,
|
34 |
+
"n_mel_channels": 80,
|
35 |
+
"mel_fmin": 0.0,
|
36 |
+
"mel_fmax": 22050
|
37 |
+
},
|
38 |
+
"model": {
|
39 |
+
"inter_channels": 192,
|
40 |
+
"hidden_channels": 192,
|
41 |
+
"filter_channels": 768,
|
42 |
+
"n_heads": 2,
|
43 |
+
"n_layers": 6,
|
44 |
+
"kernel_size": 3,
|
45 |
+
"p_dropout": 0.1,
|
46 |
+
"resblock": "1",
|
47 |
+
"resblock_kernel_sizes": [
|
48 |
+
3,
|
49 |
+
7,
|
50 |
+
11
|
51 |
+
],
|
52 |
+
"resblock_dilation_sizes": [
|
53 |
+
[
|
54 |
+
1,
|
55 |
+
3,
|
56 |
+
5
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1,
|
60 |
+
3,
|
61 |
+
5
|
62 |
+
],
|
63 |
+
[
|
64 |
+
1,
|
65 |
+
3,
|
66 |
+
5
|
67 |
+
]
|
68 |
+
],
|
69 |
+
"upsample_rates": [
|
70 |
+
8,
|
71 |
+
8,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"upsample_initial_channel": 512,
|
77 |
+
"upsample_kernel_sizes": [
|
78 |
+
16,
|
79 |
+
16,
|
80 |
+
4,
|
81 |
+
4,
|
82 |
+
4
|
83 |
+
],
|
84 |
+
"n_layers_q": 3,
|
85 |
+
"use_spectral_norm": false,
|
86 |
+
"gin_channels": 256,
|
87 |
+
"ssl_dim": 256,
|
88 |
+
"n_speakers": 200
|
89 |
+
},
|
90 |
+
"spk": {
|
91 |
+
"yuuka": 0
|
92 |
+
},
|
93 |
+
"clean_logs": true,
|
94 |
+
"trainer": "admin"
|
95 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import paddle
|
6 |
+
|
7 |
+
import modules.commons as commons
|
8 |
+
import utils
|
9 |
+
from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
|
10 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
11 |
+
|
12 |
+
# import h5py
|
13 |
+
|
14 |
+
|
15 |
+
"""Multi speaker version"""
|
16 |
+
|
17 |
+
|
18 |
+
class TextAudioSpeakerLoader(paddle.io.Dataset):
|
19 |
+
"""
|
20 |
+
1) loads audio, speaker_id, text pairs
|
21 |
+
2) normalizes text and converts them to sequences of integers
|
22 |
+
3) computes spectrograms from audio files.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, audiopaths, hparams):
|
26 |
+
self.audiopaths = load_filepaths_and_text(audiopaths)
|
27 |
+
self.max_wav_value = hparams.data.max_wav_value
|
28 |
+
self.sampling_rate = hparams.data.sampling_rate
|
29 |
+
self.filter_length = hparams.data.filter_length
|
30 |
+
self.hop_length = hparams.data.hop_length
|
31 |
+
self.win_length = hparams.data.win_length
|
32 |
+
self.sampling_rate = hparams.data.sampling_rate
|
33 |
+
self.use_sr = hparams.train.use_sr
|
34 |
+
self.spec_len = hparams.train.max_speclen
|
35 |
+
self.spk_map = hparams.spk
|
36 |
+
|
37 |
+
random.seed(1234)
|
38 |
+
random.shuffle(self.audiopaths)
|
39 |
+
|
40 |
+
def get_audio(self, filename):
|
41 |
+
filename = filename.replace("\\", "/")
|
42 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
43 |
+
if sampling_rate != self.sampling_rate:
|
44 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
45 |
+
sampling_rate, self.sampling_rate))
|
46 |
+
audio_norm = audio / self.max_wav_value
|
47 |
+
audio_norm = audio_norm.unsqueeze(0)
|
48 |
+
spec_filename = filename.replace(".wav", ".spec.pdtensor")
|
49 |
+
if os.path.exists(spec_filename):
|
50 |
+
spec = paddle.load(spec_filename)
|
51 |
+
else:
|
52 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
53 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
54 |
+
center=False)
|
55 |
+
spec = paddle.squeeze(spec, 0)
|
56 |
+
paddle.save(spec, spec_filename)
|
57 |
+
|
58 |
+
spk = filename.split("/")[-2]
|
59 |
+
spk = paddle.to_tensor([self.spk_map[spk]],dtype = 'int64')
|
60 |
+
|
61 |
+
f0 = np.load(filename + ".f0.npy")
|
62 |
+
f0, uv = utils.interpolate_f0(f0)
|
63 |
+
f0 = paddle.to_tensor(f0,dtype = 'float32')
|
64 |
+
uv = paddle.to_tensor(uv,dtype = 'float32')
|
65 |
+
|
66 |
+
c = paddle.load(filename+ ".soft.pdtensor")
|
67 |
+
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
|
68 |
+
|
69 |
+
|
70 |
+
lmin = min(c.shape[-1], spec.shape[-1])
|
71 |
+
assert abs(c.shape[-1] - spec.shape[-1]) < 3, (c.shape[-1], spec.shape[-1], f0.shape, filename)
|
72 |
+
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
|
73 |
+
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
|
74 |
+
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
75 |
+
# if spec.shape[1] < 30:
|
76 |
+
# print("skip too short audio:", filename)
|
77 |
+
# return None
|
78 |
+
if spec.shape[1] > 800:
|
79 |
+
start = random.randint(0, spec.shape[1]-800)
|
80 |
+
end = start + 790
|
81 |
+
spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
|
82 |
+
audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
|
83 |
+
|
84 |
+
return c, f0, spec, audio_norm, spk, uv
|
85 |
+
|
86 |
+
def __getitem__(self, index):
|
87 |
+
return self.get_audio(self.audiopaths[index][0])
|
88 |
+
|
89 |
+
def __len__(self):
|
90 |
+
return len(self.audiopaths)
|
91 |
+
|
92 |
+
|
93 |
+
class TextAudioCollate:
|
94 |
+
|
95 |
+
def __call__(self, batch):
|
96 |
+
batch = [b for b in batch if b is not None]
|
97 |
+
|
98 |
+
input_lengths, ids_sorted_decreasing = \
|
99 |
+
paddle.sort(
|
100 |
+
paddle.to_tensor([x[0].shape[1] for x in batch],dtype = 'int64'),
|
101 |
+
axis=0, descending=True),\
|
102 |
+
paddle.argsort(
|
103 |
+
paddle.to_tensor([x[0].shape[1] for x in batch],dtype = 'int64'),
|
104 |
+
axis=0, descending=True)
|
105 |
+
|
106 |
+
max_c_len = max([x[0].shape[1] for x in batch])
|
107 |
+
max_wav_len = max([x[3].shape[1] for x in batch])
|
108 |
+
|
109 |
+
lengths = paddle.zeros((len(batch),),dtype = 'int64')
|
110 |
+
c_padded = paddle.to_tensor(np.random.rand(len(batch), batch[0][0].shape[0], max_c_len),dtype = 'float32')
|
111 |
+
f0_padded = paddle.to_tensor(np.random.rand(len(batch), max_c_len),dtype = 'float32')
|
112 |
+
spec_padded = paddle.to_tensor(np.random.rand(len(batch), batch[0][2].shape[0], max_c_len),dtype = 'float32')
|
113 |
+
wav_padded = paddle.to_tensor(np.random.rand(len(batch), 1, max_wav_len),dtype = 'float32')
|
114 |
+
spkids = paddle.zeros((len(batch), 1),dtype = 'int64')
|
115 |
+
uv_padded = paddle.to_tensor(np.random.rand(len(batch), max_c_len),dtype = 'float32')
|
116 |
+
|
117 |
+
c_padded.zero_()
|
118 |
+
spec_padded.zero_()
|
119 |
+
f0_padded.zero_()
|
120 |
+
wav_padded.zero_()
|
121 |
+
uv_padded.zero_()
|
122 |
+
|
123 |
+
for i in range(len(ids_sorted_decreasing)):
|
124 |
+
row = batch[ids_sorted_decreasing[i]]
|
125 |
+
|
126 |
+
c = row[0]
|
127 |
+
c_padded[i, :, :c.shape[1]] = c
|
128 |
+
lengths[i] = c.shape[1]
|
129 |
+
|
130 |
+
f0 = row[1]
|
131 |
+
f0_padded[i, :f0.shape[0]] = f0
|
132 |
+
|
133 |
+
spec = row[2]
|
134 |
+
spec_padded[i, :, :spec.shape[1]] = spec
|
135 |
+
|
136 |
+
wav = row[3]
|
137 |
+
wav_padded[i, :, :wav.shape[1]] = wav
|
138 |
+
spkids[i, 0] = row[4]
|
139 |
+
|
140 |
+
uv = row[5]
|
141 |
+
uv_padded[i, :uv.shape[0]] = uv
|
142 |
+
|
143 |
+
return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded
|
examples/instrumental/Counter_clockwise_Clock_instrumental.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a1c1d882e28458a0aa448cb68b65344e4839a2354766d679f20970c30362fc9
|
3 |
+
size 2062380
|
examples/instrumental/blue_instrumental.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bbbc0b86619c634cbad2769ce035e96d4b7e598d50260be11a84e21f7b8b311
|
3 |
+
size 5420756
|
examples/instrumental/one_last_kiss_instrumental.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:223b2eb0ef567c891bf61a3f05d97aea97b18fb44bc21d6726053f81c5fe0f57
|
3 |
+
size 6575226
|
examples/song/Counter_clockwise_Clock.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b87df2edb949b8c8d87f740ebd701c764425636906b0232c6ea7375b0dc898e8
|
3 |
+
size 2252296
|
examples/song/blue.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b80bd01d14fcd86bbee2c048f94b8b5927ae0a661ff5b2b99a014110a8c9a49
|
3 |
+
size 2709736
|
examples/song/one_last_kiss.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc671b5095cc1dfa00772de09f8fa94741482b573eafbd88188fe909cdb1f173
|
3 |
+
size 6575226
|
examples/vocals/Counter_clockwise_Clock_vocal.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f749f2b9a1c8af5afbc66544956337ce12fd1c5b9d64e69d1212847a36480b9e
|
3 |
+
size 2062380
|
examples/vocals/blue_vocal.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5014db90a4bd53a18054ae2a2f9b1e733c8c474a6872beace1c3bd716b2cb61f
|
3 |
+
size 2484268
|
examples/vocals/one_last_kiss_vocal.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d52245bb0ac3965ebedcf730d5e21bc8d35519b84184c40b9f8ec780420b813c
|
3 |
+
size 6568602
|
filelists/test.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
./dataset/44k/yuuka/7_93.wav
|
2 |
+
./dataset/44k/yuuka/1_98.wav
|
filelists/train.txt
ADDED
@@ -0,0 +1,857 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
./dataset/44k/yuuka/1_44.wav
|
2 |
+
./dataset/44k/yuuka/6_3.wav
|
3 |
+
./dataset/44k/yuuka/3_136.wav
|
4 |
+
./dataset/44k/yuuka/3_63.wav
|
5 |
+
./dataset/44k/yuuka/4_14.wav
|
6 |
+
./dataset/44k/yuuka/7_168.wav
|
7 |
+
./dataset/44k/yuuka/4_12.wav
|
8 |
+
./dataset/44k/yuuka/364983.wav
|
9 |
+
./dataset/44k/yuuka/606448.wav
|
10 |
+
./dataset/44k/yuuka/5_21.wav
|
11 |
+
./dataset/44k/yuuka/8_23.wav
|
12 |
+
./dataset/44k/yuuka/9_69.wav
|
13 |
+
./dataset/44k/yuuka/5_91.wav
|
14 |
+
./dataset/44k/yuuka/3_163.wav
|
15 |
+
./dataset/44k/yuuka/6_27.wav
|
16 |
+
./dataset/44k/yuuka/234705.wav
|
17 |
+
./dataset/44k/yuuka/3_176.wav
|
18 |
+
./dataset/44k/yuuka/1_93.wav
|
19 |
+
./dataset/44k/yuuka/76490.wav
|
20 |
+
./dataset/44k/yuuka/3_179.wav
|
21 |
+
./dataset/44k/yuuka/1_69.wav
|
22 |
+
./dataset/44k/yuuka/192554.wav
|
23 |
+
./dataset/44k/yuuka/218550.wav
|
24 |
+
./dataset/44k/yuuka/6_16.wav
|
25 |
+
./dataset/44k/yuuka/5_35.wav
|
26 |
+
./dataset/44k/yuuka/207846.wav
|
27 |
+
./dataset/44k/yuuka/7_145.wav
|
28 |
+
./dataset/44k/yuuka/audio_28.wav
|
29 |
+
./dataset/44k/yuuka/2_30.wav
|
30 |
+
./dataset/44k/yuuka/1_55.wav
|
31 |
+
./dataset/44k/yuuka/5_6.wav
|
32 |
+
./dataset/44k/yuuka/3_178.wav
|
33 |
+
./dataset/44k/yuuka/3_19.wav
|
34 |
+
./dataset/44k/yuuka/audio_15.wav
|
35 |
+
./dataset/44k/yuuka/3_134.wav
|
36 |
+
./dataset/44k/yuuka/1_1.wav
|
37 |
+
./dataset/44k/yuuka/5_66.wav
|
38 |
+
./dataset/44k/yuuka/7_61.wav
|
39 |
+
./dataset/44k/yuuka/7_43.wav
|
40 |
+
./dataset/44k/yuuka/9_4.wav
|
41 |
+
./dataset/44k/yuuka/4_42.wav
|
42 |
+
./dataset/44k/yuuka/7_130.wav
|
43 |
+
./dataset/44k/yuuka/5_52.wav
|
44 |
+
./dataset/44k/yuuka/919255.wav
|
45 |
+
./dataset/44k/yuuka/4_82.wav
|
46 |
+
./dataset/44k/yuuka/1_114.wav
|
47 |
+
./dataset/44k/yuuka/7_7.wav
|
48 |
+
./dataset/44k/yuuka/1_79.wav
|
49 |
+
./dataset/44k/yuuka/1_33.wav
|
50 |
+
./dataset/44k/yuuka/9_21.wav
|
51 |
+
./dataset/44k/yuuka/574054.wav
|
52 |
+
./dataset/44k/yuuka/69301.wav
|
53 |
+
./dataset/44k/yuuka/5_30.wav
|
54 |
+
./dataset/44k/yuuka/119619.wav
|
55 |
+
./dataset/44k/yuuka/7_167.wav
|
56 |
+
./dataset/44k/yuuka/1_45.wav
|
57 |
+
./dataset/44k/yuuka/6_23.wav
|
58 |
+
./dataset/44k/yuuka/656221.wav
|
59 |
+
./dataset/44k/yuuka/9_65.wav
|
60 |
+
./dataset/44k/yuuka/3_85.wav
|
61 |
+
./dataset/44k/yuuka/7_188.wav
|
62 |
+
./dataset/44k/yuuka/6_13.wav
|
63 |
+
./dataset/44k/yuuka/3_60.wav
|
64 |
+
./dataset/44k/yuuka/997011.wav
|
65 |
+
./dataset/44k/yuuka/audio_1.wav
|
66 |
+
./dataset/44k/yuuka/6_39.wav
|
67 |
+
./dataset/44k/yuuka/5_15.wav
|
68 |
+
./dataset/44k/yuuka/7775.wav
|
69 |
+
./dataset/44k/yuuka/969593.wav
|
70 |
+
./dataset/44k/yuuka/7_94.wav
|
71 |
+
./dataset/44k/yuuka/39442.wav
|
72 |
+
./dataset/44k/yuuka/9_37.wav
|
73 |
+
./dataset/44k/yuuka/3_46.wav
|
74 |
+
./dataset/44k/yuuka/5_41.wav
|
75 |
+
./dataset/44k/yuuka/517653.wav
|
76 |
+
./dataset/44k/yuuka/9_38.wav
|
77 |
+
./dataset/44k/yuuka/2_18.wav
|
78 |
+
./dataset/44k/yuuka/255268.wav
|
79 |
+
./dataset/44k/yuuka/8_5.wav
|
80 |
+
./dataset/44k/yuuka/4_22.wav
|
81 |
+
./dataset/44k/yuuka/1_81.wav
|
82 |
+
./dataset/44k/yuuka/3_39.wav
|
83 |
+
./dataset/44k/yuuka/262686.wav
|
84 |
+
./dataset/44k/yuuka/3_105.wav
|
85 |
+
./dataset/44k/yuuka/571657.wav
|
86 |
+
./dataset/44k/yuuka/8_20.wav
|
87 |
+
./dataset/44k/yuuka/6_33.wav
|
88 |
+
./dataset/44k/yuuka/3_165.wav
|
89 |
+
./dataset/44k/yuuka/594447.wav
|
90 |
+
./dataset/44k/yuuka/7_181.wav
|
91 |
+
./dataset/44k/yuuka/695541.wav
|
92 |
+
./dataset/44k/yuuka/1_32.wav
|
93 |
+
./dataset/44k/yuuka/1_92.wav
|
94 |
+
./dataset/44k/yuuka/3_40.wav
|
95 |
+
./dataset/44k/yuuka/98954.wav
|
96 |
+
./dataset/44k/yuuka/8_11.wav
|
97 |
+
./dataset/44k/yuuka/7_25.wav
|
98 |
+
./dataset/44k/yuuka/4_43.wav
|
99 |
+
./dataset/44k/yuuka/3_26.wav
|
100 |
+
./dataset/44k/yuuka/7_23.wav
|
101 |
+
./dataset/44k/yuuka/1_34.wav
|
102 |
+
./dataset/44k/yuuka/3_24.wav
|
103 |
+
./dataset/44k/yuuka/3_135.wav
|
104 |
+
./dataset/44k/yuuka/4_33.wav
|
105 |
+
./dataset/44k/yuuka/9_39.wav
|
106 |
+
./dataset/44k/yuuka/52347.wav
|
107 |
+
./dataset/44k/yuuka/3_54.wav
|
108 |
+
./dataset/44k/yuuka/3_145.wav
|
109 |
+
./dataset/44k/yuuka/1_13.wav
|
110 |
+
./dataset/44k/yuuka/463536.wav
|
111 |
+
./dataset/44k/yuuka/3_104.wav
|
112 |
+
./dataset/44k/yuuka/2_20.wav
|
113 |
+
./dataset/44k/yuuka/3_66.wav
|
114 |
+
./dataset/44k/yuuka/7_182.wav
|
115 |
+
./dataset/44k/yuuka/3_1.wav
|
116 |
+
./dataset/44k/yuuka/5_63.wav
|
117 |
+
./dataset/44k/yuuka/3_12.wav
|
118 |
+
./dataset/44k/yuuka/audio_40.wav
|
119 |
+
./dataset/44k/yuuka/7_127.wav
|
120 |
+
./dataset/44k/yuuka/1_11.wav
|
121 |
+
./dataset/44k/yuuka/audio_10.wav
|
122 |
+
./dataset/44k/yuuka/490130.wav
|
123 |
+
./dataset/44k/yuuka/3_162.wav
|
124 |
+
./dataset/44k/yuuka/audio_11.wav
|
125 |
+
./dataset/44k/yuuka/3_42.wav
|
126 |
+
./dataset/44k/yuuka/635392.wav
|
127 |
+
./dataset/44k/yuuka/7_52.wav
|
128 |
+
./dataset/44k/yuuka/5_51.wav
|
129 |
+
./dataset/44k/yuuka/8_6.wav
|
130 |
+
./dataset/44k/yuuka/8_7.wav
|
131 |
+
./dataset/44k/yuuka/8_1.wav
|
132 |
+
./dataset/44k/yuuka/3_94.wav
|
133 |
+
./dataset/44k/yuuka/1_10.wav
|
134 |
+
./dataset/44k/yuuka/9_76.wav
|
135 |
+
./dataset/44k/yuuka/7_160.wav
|
136 |
+
./dataset/44k/yuuka/3_98.wav
|
137 |
+
./dataset/44k/yuuka/553418.wav
|
138 |
+
./dataset/44k/yuuka/3_53.wav
|
139 |
+
./dataset/44k/yuuka/295642.wav
|
140 |
+
./dataset/44k/yuuka/5_45.wav
|
141 |
+
./dataset/44k/yuuka/5_50.wav
|
142 |
+
./dataset/44k/yuuka/1_47.wav
|
143 |
+
./dataset/44k/yuuka/4_50.wav
|
144 |
+
./dataset/44k/yuuka/609212.wav
|
145 |
+
./dataset/44k/yuuka/4_77.wav
|
146 |
+
./dataset/44k/yuuka/5_13.wav
|
147 |
+
./dataset/44k/yuuka/2_21.wav
|
148 |
+
./dataset/44k/yuuka/9_25.wav
|
149 |
+
./dataset/44k/yuuka/2_6.wav
|
150 |
+
./dataset/44k/yuuka/4_1.wav
|
151 |
+
./dataset/44k/yuuka/8_4.wav
|
152 |
+
./dataset/44k/yuuka/1_14.wav
|
153 |
+
./dataset/44k/yuuka/7_55.wav
|
154 |
+
./dataset/44k/yuuka/3_90.wav
|
155 |
+
./dataset/44k/yuuka/7_98.wav
|
156 |
+
./dataset/44k/yuuka/1_26.wav
|
157 |
+
./dataset/44k/yuuka/7_187.wav
|
158 |
+
./dataset/44k/yuuka/622956.wav
|
159 |
+
./dataset/44k/yuuka/4_37.wav
|
160 |
+
./dataset/44k/yuuka/61332.wav
|
161 |
+
./dataset/44k/yuuka/1_43.wav
|
162 |
+
./dataset/44k/yuuka/233242.wav
|
163 |
+
./dataset/44k/yuuka/audio_36.wav
|
164 |
+
./dataset/44k/yuuka/2_3.wav
|
165 |
+
./dataset/44k/yuuka/9_80.wav
|
166 |
+
./dataset/44k/yuuka/3_14.wav
|
167 |
+
./dataset/44k/yuuka/9_32.wav
|
168 |
+
./dataset/44k/yuuka/audio_12.wav
|
169 |
+
./dataset/44k/yuuka/7_164.wav
|
170 |
+
./dataset/44k/yuuka/4_56.wav
|
171 |
+
./dataset/44k/yuuka/5_36.wav
|
172 |
+
./dataset/44k/yuuka/359799.wav
|
173 |
+
./dataset/44k/yuuka/6_0.wav
|
174 |
+
./dataset/44k/yuuka/5_85.wav
|
175 |
+
./dataset/44k/yuuka/6_4.wav
|
176 |
+
./dataset/44k/yuuka/537888.wav
|
177 |
+
./dataset/44k/yuuka/7_108.wav
|
178 |
+
./dataset/44k/yuuka/352307.wav
|
179 |
+
./dataset/44k/yuuka/3_18.wav
|
180 |
+
./dataset/44k/yuuka/3_51.wav
|
181 |
+
./dataset/44k/yuuka/8_26.wav
|
182 |
+
./dataset/44k/yuuka/7_49.wav
|
183 |
+
./dataset/44k/yuuka/3_129.wav
|
184 |
+
./dataset/44k/yuuka/2_13.wav
|
185 |
+
./dataset/44k/yuuka/7_44.wav
|
186 |
+
./dataset/44k/yuuka/3_50.wav
|
187 |
+
./dataset/44k/yuuka/5_95.wav
|
188 |
+
./dataset/44k/yuuka/audio_29.wav
|
189 |
+
./dataset/44k/yuuka/6_21.wav
|
190 |
+
./dataset/44k/yuuka/8_15.wav
|
191 |
+
./dataset/44k/yuuka/963257.wav
|
192 |
+
./dataset/44k/yuuka/7_95.wav
|
193 |
+
./dataset/44k/yuuka/2_11.wav
|
194 |
+
./dataset/44k/yuuka/4_38.wav
|
195 |
+
./dataset/44k/yuuka/1_68.wav
|
196 |
+
./dataset/44k/yuuka/1_58.wav
|
197 |
+
./dataset/44k/yuuka/3_181.wav
|
198 |
+
./dataset/44k/yuuka/3_29.wav
|
199 |
+
./dataset/44k/yuuka/7_76.wav
|
200 |
+
./dataset/44k/yuuka/2_24.wav
|
201 |
+
./dataset/44k/yuuka/6_7.wav
|
202 |
+
./dataset/44k/yuuka/7_134.wav
|
203 |
+
./dataset/44k/yuuka/3_89.wav
|
204 |
+
./dataset/44k/yuuka/audio_19.wav
|
205 |
+
./dataset/44k/yuuka/3_41.wav
|
206 |
+
./dataset/44k/yuuka/9_59.wav
|
207 |
+
./dataset/44k/yuuka/7_56.wav
|
208 |
+
./dataset/44k/yuuka/3_167.wav
|
209 |
+
./dataset/44k/yuuka/1_31.wav
|
210 |
+
./dataset/44k/yuuka/8_24.wav
|
211 |
+
./dataset/44k/yuuka/4_54.wav
|
212 |
+
./dataset/44k/yuuka/7_53.wav
|
213 |
+
./dataset/44k/yuuka/7_120.wav
|
214 |
+
./dataset/44k/yuuka/3_132.wav
|
215 |
+
./dataset/44k/yuuka/9_11.wav
|
216 |
+
./dataset/44k/yuuka/3_65.wav
|
217 |
+
./dataset/44k/yuuka/5_8.wav
|
218 |
+
./dataset/44k/yuuka/3_2.wav
|
219 |
+
./dataset/44k/yuuka/519313.wav
|
220 |
+
./dataset/44k/yuuka/audio_16.wav
|
221 |
+
./dataset/44k/yuuka/283655.wav
|
222 |
+
./dataset/44k/yuuka/6_41.wav
|
223 |
+
./dataset/44k/yuuka/5_74.wav
|
224 |
+
./dataset/44k/yuuka/5_88.wav
|
225 |
+
./dataset/44k/yuuka/9_56.wav
|
226 |
+
./dataset/44k/yuuka/2_23.wav
|
227 |
+
./dataset/44k/yuuka/3_22.wav
|
228 |
+
./dataset/44k/yuuka/4_41.wav
|
229 |
+
./dataset/44k/yuuka/9_47.wav
|
230 |
+
./dataset/44k/yuuka/4_5.wav
|
231 |
+
./dataset/44k/yuuka/974105.wav
|
232 |
+
./dataset/44k/yuuka/2_2.wav
|
233 |
+
./dataset/44k/yuuka/86716.wav
|
234 |
+
./dataset/44k/yuuka/300145.wav
|
235 |
+
./dataset/44k/yuuka/9_60.wav
|
236 |
+
./dataset/44k/yuuka/3_36.wav
|
237 |
+
./dataset/44k/yuuka/3_77.wav
|
238 |
+
./dataset/44k/yuuka/287748.wav
|
239 |
+
./dataset/44k/yuuka/7_37.wav
|
240 |
+
./dataset/44k/yuuka/3_11.wav
|
241 |
+
./dataset/44k/yuuka/5_3.wav
|
242 |
+
./dataset/44k/yuuka/1_62.wav
|
243 |
+
./dataset/44k/yuuka/8_3.wav
|
244 |
+
./dataset/44k/yuuka/audio_5.wav
|
245 |
+
./dataset/44k/yuuka/9_14.wav
|
246 |
+
./dataset/44k/yuuka/5_25.wav
|
247 |
+
./dataset/44k/yuuka/5_24.wav
|
248 |
+
./dataset/44k/yuuka/1_66.wav
|
249 |
+
./dataset/44k/yuuka/484944.wav
|
250 |
+
./dataset/44k/yuuka/171951.wav
|
251 |
+
./dataset/44k/yuuka/102566.wav
|
252 |
+
./dataset/44k/yuuka/3_27.wav
|
253 |
+
./dataset/44k/yuuka/3_108.wav
|
254 |
+
./dataset/44k/yuuka/audio_9.wav
|
255 |
+
./dataset/44k/yuuka/4_80.wav
|
256 |
+
./dataset/44k/yuuka/3_56.wav
|
257 |
+
./dataset/44k/yuuka/9_63.wav
|
258 |
+
./dataset/44k/yuuka/7_51.wav
|
259 |
+
./dataset/44k/yuuka/1_51.wav
|
260 |
+
./dataset/44k/yuuka/5_90.wav
|
261 |
+
./dataset/44k/yuuka/356679.wav
|
262 |
+
./dataset/44k/yuuka/724651.wav
|
263 |
+
./dataset/44k/yuuka/7_65.wav
|
264 |
+
./dataset/44k/yuuka/251091.wav
|
265 |
+
./dataset/44k/yuuka/9_10.wav
|
266 |
+
./dataset/44k/yuuka/7_2.wav
|
267 |
+
./dataset/44k/yuuka/4_10.wav
|
268 |
+
./dataset/44k/yuuka/3_182.wav
|
269 |
+
./dataset/44k/yuuka/3_55.wav
|
270 |
+
./dataset/44k/yuuka/1_9.wav
|
271 |
+
./dataset/44k/yuuka/3_97.wav
|
272 |
+
./dataset/44k/yuuka/1_25.wav
|
273 |
+
./dataset/44k/yuuka/96411.wav
|
274 |
+
./dataset/44k/yuuka/7_31.wav
|
275 |
+
./dataset/44k/yuuka/427153.wav
|
276 |
+
./dataset/44k/yuuka/4_48.wav
|
277 |
+
./dataset/44k/yuuka/1_89.wav
|
278 |
+
./dataset/44k/yuuka/audio_30.wav
|
279 |
+
./dataset/44k/yuuka/135370.wav
|
280 |
+
./dataset/44k/yuuka/7_166.wav
|
281 |
+
./dataset/44k/yuuka/7_39.wav
|
282 |
+
./dataset/44k/yuuka/4_39.wav
|
283 |
+
./dataset/44k/yuuka/6_36.wav
|
284 |
+
./dataset/44k/yuuka/8_9.wav
|
285 |
+
./dataset/44k/yuuka/4_24.wav
|
286 |
+
./dataset/44k/yuuka/4_72.wav
|
287 |
+
./dataset/44k/yuuka/5_58.wav
|
288 |
+
./dataset/44k/yuuka/7_162.wav
|
289 |
+
./dataset/44k/yuuka/6_11.wav
|
290 |
+
./dataset/44k/yuuka/audio_13.wav
|
291 |
+
./dataset/44k/yuuka/3_67.wav
|
292 |
+
./dataset/44k/yuuka/9_15.wav
|
293 |
+
./dataset/44k/yuuka/3_93.wav
|
294 |
+
./dataset/44k/yuuka/8_25.wav
|
295 |
+
./dataset/44k/yuuka/1_74.wav
|
296 |
+
./dataset/44k/yuuka/7_137.wav
|
297 |
+
./dataset/44k/yuuka/9_74.wav
|
298 |
+
./dataset/44k/yuuka/3_131.wav
|
299 |
+
./dataset/44k/yuuka/3_31.wav
|
300 |
+
./dataset/44k/yuuka/3_95.wav
|
301 |
+
./dataset/44k/yuuka/445323.wav
|
302 |
+
./dataset/44k/yuuka/1_48.wav
|
303 |
+
./dataset/44k/yuuka/audio_23.wav
|
304 |
+
./dataset/44k/yuuka/5_62.wav
|
305 |
+
./dataset/44k/yuuka/5_67.wav
|
306 |
+
./dataset/44k/yuuka/4_74.wav
|
307 |
+
./dataset/44k/yuuka/audio_35.wav
|
308 |
+
./dataset/44k/yuuka/9_3.wav
|
309 |
+
./dataset/44k/yuuka/379745.wav
|
310 |
+
./dataset/44k/yuuka/6_17.wav
|
311 |
+
./dataset/44k/yuuka/audio_4.wav
|
312 |
+
./dataset/44k/yuuka/3_160.wav
|
313 |
+
./dataset/44k/yuuka/9_5.wav
|
314 |
+
./dataset/44k/yuuka/9_22.wav
|
315 |
+
./dataset/44k/yuuka/1_4.wav
|
316 |
+
./dataset/44k/yuuka/2_1.wav
|
317 |
+
./dataset/44k/yuuka/9_51.wav
|
318 |
+
./dataset/44k/yuuka/6_38.wav
|
319 |
+
./dataset/44k/yuuka/3_30.wav
|
320 |
+
./dataset/44k/yuuka/3_180.wav
|
321 |
+
./dataset/44k/yuuka/5_69.wav
|
322 |
+
./dataset/44k/yuuka/3_44.wav
|
323 |
+
./dataset/44k/yuuka/3_45.wav
|
324 |
+
./dataset/44k/yuuka/7_17.wav
|
325 |
+
./dataset/44k/yuuka/audio_41.wav
|
326 |
+
./dataset/44k/yuuka/1_24.wav
|
327 |
+
./dataset/44k/yuuka/7_132.wav
|
328 |
+
./dataset/44k/yuuka/9_44.wav
|
329 |
+
./dataset/44k/yuuka/9_43.wav
|
330 |
+
./dataset/44k/yuuka/1_15.wav
|
331 |
+
./dataset/44k/yuuka/469368.wav
|
332 |
+
./dataset/44k/yuuka/144449.wav
|
333 |
+
./dataset/44k/yuuka/2_7.wav
|
334 |
+
./dataset/44k/yuuka/audio_17.wav
|
335 |
+
./dataset/44k/yuuka/5_92.wav
|
336 |
+
./dataset/44k/yuuka/7_96.wav
|
337 |
+
./dataset/44k/yuuka/5_53.wav
|
338 |
+
./dataset/44k/yuuka/6_20.wav
|
339 |
+
./dataset/44k/yuuka/8_19.wav
|
340 |
+
./dataset/44k/yuuka/5_12.wav
|
341 |
+
./dataset/44k/yuuka/3_38.wav
|
342 |
+
./dataset/44k/yuuka/7_57.wav
|
343 |
+
./dataset/44k/yuuka/6_32.wav
|
344 |
+
./dataset/44k/yuuka/3_48.wav
|
345 |
+
./dataset/44k/yuuka/5_0.wav
|
346 |
+
./dataset/44k/yuuka/7_1.wav
|
347 |
+
./dataset/44k/yuuka/3_52.wav
|
348 |
+
./dataset/44k/yuuka/7_135.wav
|
349 |
+
./dataset/44k/yuuka/1_20.wav
|
350 |
+
./dataset/44k/yuuka/206478.wav
|
351 |
+
./dataset/44k/yuuka/7_6.wav
|
352 |
+
./dataset/44k/yuuka/7_165.wav
|
353 |
+
./dataset/44k/yuuka/271096.wav
|
354 |
+
./dataset/44k/yuuka/1_17.wav
|
355 |
+
./dataset/44k/yuuka/6_9.wav
|
356 |
+
./dataset/44k/yuuka/3_122.wav
|
357 |
+
./dataset/44k/yuuka/7_10.wav
|
358 |
+
./dataset/44k/yuuka/audio_38.wav
|
359 |
+
./dataset/44k/yuuka/507694.wav
|
360 |
+
./dataset/44k/yuuka/1_28.wav
|
361 |
+
./dataset/44k/yuuka/9_7.wav
|
362 |
+
./dataset/44k/yuuka/8_27.wav
|
363 |
+
./dataset/44k/yuuka/7_8.wav
|
364 |
+
./dataset/44k/yuuka/8_29.wav
|
365 |
+
./dataset/44k/yuuka/2_12.wav
|
366 |
+
./dataset/44k/yuuka/8_12.wav
|
367 |
+
./dataset/44k/yuuka/7_26.wav
|
368 |
+
./dataset/44k/yuuka/4_9.wav
|
369 |
+
./dataset/44k/yuuka/3_21.wav
|
370 |
+
./dataset/44k/yuuka/3_61.wav
|
371 |
+
./dataset/44k/yuuka/64918.wav
|
372 |
+
./dataset/44k/yuuka/7_172.wav
|
373 |
+
./dataset/44k/yuuka/5_27.wav
|
374 |
+
./dataset/44k/yuuka/256460.wav
|
375 |
+
./dataset/44k/yuuka/1_7.wav
|
376 |
+
./dataset/44k/yuuka/7_185.wav
|
377 |
+
./dataset/44k/yuuka/3_62.wav
|
378 |
+
./dataset/44k/yuuka/5_40.wav
|
379 |
+
./dataset/44k/yuuka/6_30.wav
|
380 |
+
./dataset/44k/yuuka/7_32.wav
|
381 |
+
./dataset/44k/yuuka/4_76.wav
|
382 |
+
./dataset/44k/yuuka/3_185.wav
|
383 |
+
./dataset/44k/yuuka/622091.wav
|
384 |
+
./dataset/44k/yuuka/3_33.wav
|
385 |
+
./dataset/44k/yuuka/9_70.wav
|
386 |
+
./dataset/44k/yuuka/9_66.wav
|
387 |
+
./dataset/44k/yuuka/7_40.wav
|
388 |
+
./dataset/44k/yuuka/813875.wav
|
389 |
+
./dataset/44k/yuuka/7_176.wav
|
390 |
+
./dataset/44k/yuuka/4_55.wav
|
391 |
+
./dataset/44k/yuuka/3_91.wav
|
392 |
+
./dataset/44k/yuuka/4_4.wav
|
393 |
+
./dataset/44k/yuuka/5_72.wav
|
394 |
+
./dataset/44k/yuuka/551231.wav
|
395 |
+
./dataset/44k/yuuka/7_64.wav
|
396 |
+
./dataset/44k/yuuka/7_143.wav
|
397 |
+
./dataset/44k/yuuka/1_37.wav
|
398 |
+
./dataset/44k/yuuka/5_54.wav
|
399 |
+
./dataset/44k/yuuka/5_26.wav
|
400 |
+
./dataset/44k/yuuka/audio_0.wav
|
401 |
+
./dataset/44k/yuuka/3_125.wav
|
402 |
+
./dataset/44k/yuuka/1_41.wav
|
403 |
+
./dataset/44k/yuuka/7_142.wav
|
404 |
+
./dataset/44k/yuuka/4_23.wav
|
405 |
+
./dataset/44k/yuuka/3_184.wav
|
406 |
+
./dataset/44k/yuuka/6_6.wav
|
407 |
+
./dataset/44k/yuuka/9_73.wav
|
408 |
+
./dataset/44k/yuuka/3_166.wav
|
409 |
+
./dataset/44k/yuuka/2_28.wav
|
410 |
+
./dataset/44k/yuuka/9_0.wav
|
411 |
+
./dataset/44k/yuuka/1_12.wav
|
412 |
+
./dataset/44k/yuuka/6_18.wav
|
413 |
+
./dataset/44k/yuuka/349028.wav
|
414 |
+
./dataset/44k/yuuka/547091.wav
|
415 |
+
./dataset/44k/yuuka/audio_14.wav
|
416 |
+
./dataset/44k/yuuka/5_34.wav
|
417 |
+
./dataset/44k/yuuka/4_19.wav
|
418 |
+
./dataset/44k/yuuka/7_27.wav
|
419 |
+
./dataset/44k/yuuka/7_20.wav
|
420 |
+
./dataset/44k/yuuka/9_35.wav
|
421 |
+
./dataset/44k/yuuka/8_16.wav
|
422 |
+
./dataset/44k/yuuka/7_102.wav
|
423 |
+
./dataset/44k/yuuka/3_6.wav
|
424 |
+
./dataset/44k/yuuka/798678.wav
|
425 |
+
./dataset/44k/yuuka/915260.wav
|
426 |
+
./dataset/44k/yuuka/7_103.wav
|
427 |
+
./dataset/44k/yuuka/5_18.wav
|
428 |
+
./dataset/44k/yuuka/3_13.wav
|
429 |
+
./dataset/44k/yuuka/7_85.wav
|
430 |
+
./dataset/44k/yuuka/85191.wav
|
431 |
+
./dataset/44k/yuuka/5_76.wav
|
432 |
+
./dataset/44k/yuuka/3_4.wav
|
433 |
+
./dataset/44k/yuuka/3_142.wav
|
434 |
+
./dataset/44k/yuuka/4_59.wav
|
435 |
+
./dataset/44k/yuuka/711779.wav
|
436 |
+
./dataset/44k/yuuka/7_104.wav
|
437 |
+
./dataset/44k/yuuka/7_129.wav
|
438 |
+
./dataset/44k/yuuka/470902.wav
|
439 |
+
./dataset/44k/yuuka/1_49.wav
|
440 |
+
./dataset/44k/yuuka/7_11.wav
|
441 |
+
./dataset/44k/yuuka/6_1.wav
|
442 |
+
./dataset/44k/yuuka/1_67.wav
|
443 |
+
./dataset/44k/yuuka/7_170.wav
|
444 |
+
./dataset/44k/yuuka/1_39.wav
|
445 |
+
./dataset/44k/yuuka/550982.wav
|
446 |
+
./dataset/44k/yuuka/7_125.wav
|
447 |
+
./dataset/44k/yuuka/9_75.wav
|
448 |
+
./dataset/44k/yuuka/8_21.wav
|
449 |
+
./dataset/44k/yuuka/3_0.wav
|
450 |
+
./dataset/44k/yuuka/1_18.wav
|
451 |
+
./dataset/44k/yuuka/audio_42.wav
|
452 |
+
./dataset/44k/yuuka/5_20.wav
|
453 |
+
./dataset/44k/yuuka/4_46.wav
|
454 |
+
./dataset/44k/yuuka/253501.wav
|
455 |
+
./dataset/44k/yuuka/7_184.wav
|
456 |
+
./dataset/44k/yuuka/8_30.wav
|
457 |
+
./dataset/44k/yuuka/2_0.wav
|
458 |
+
./dataset/44k/yuuka/7_140.wav
|
459 |
+
./dataset/44k/yuuka/9_77.wav
|
460 |
+
./dataset/44k/yuuka/7_89.wav
|
461 |
+
./dataset/44k/yuuka/56932.wav
|
462 |
+
./dataset/44k/yuuka/audio_32.wav
|
463 |
+
./dataset/44k/yuuka/7_29.wav
|
464 |
+
./dataset/44k/yuuka/7_50.wav
|
465 |
+
./dataset/44k/yuuka/9_64.wav
|
466 |
+
./dataset/44k/yuuka/3_34.wav
|
467 |
+
./dataset/44k/yuuka/4_36.wav
|
468 |
+
./dataset/44k/yuuka/1_38.wav
|
469 |
+
./dataset/44k/yuuka/9_34.wav
|
470 |
+
./dataset/44k/yuuka/705069.wav
|
471 |
+
./dataset/44k/yuuka/7_54.wav
|
472 |
+
./dataset/44k/yuuka/3_121.wav
|
473 |
+
./dataset/44k/yuuka/7_177.wav
|
474 |
+
./dataset/44k/yuuka/audio_3.wav
|
475 |
+
./dataset/44k/yuuka/437916.wav
|
476 |
+
./dataset/44k/yuuka/7_169.wav
|
477 |
+
./dataset/44k/yuuka/6_24.wav
|
478 |
+
./dataset/44k/yuuka/2_5.wav
|
479 |
+
./dataset/44k/yuuka/5_48.wav
|
480 |
+
./dataset/44k/yuuka/3_47.wav
|
481 |
+
./dataset/44k/yuuka/3_78.wav
|
482 |
+
./dataset/44k/yuuka/3_187.wav
|
483 |
+
./dataset/44k/yuuka/7_124.wav
|
484 |
+
./dataset/44k/yuuka/3_169.wav
|
485 |
+
./dataset/44k/yuuka/321860.wav
|
486 |
+
./dataset/44k/yuuka/5_46.wav
|
487 |
+
./dataset/44k/yuuka/3_86.wav
|
488 |
+
./dataset/44k/yuuka/3_87.wav
|
489 |
+
./dataset/44k/yuuka/1_83.wav
|
490 |
+
./dataset/44k/yuuka/1_36.wav
|
491 |
+
./dataset/44k/yuuka/1_116.wav
|
492 |
+
./dataset/44k/yuuka/687395.wav
|
493 |
+
./dataset/44k/yuuka/1_35.wav
|
494 |
+
./dataset/44k/yuuka/7_186.wav
|
495 |
+
./dataset/44k/yuuka/9_49.wav
|
496 |
+
./dataset/44k/yuuka/8_18.wav
|
497 |
+
./dataset/44k/yuuka/6_14.wav
|
498 |
+
./dataset/44k/yuuka/5_4.wav
|
499 |
+
./dataset/44k/yuuka/9_58.wav
|
500 |
+
./dataset/44k/yuuka/498387.wav
|
501 |
+
./dataset/44k/yuuka/5_42.wav
|
502 |
+
./dataset/44k/yuuka/3_17.wav
|
503 |
+
./dataset/44k/yuuka/4_3.wav
|
504 |
+
./dataset/44k/yuuka/7_24.wav
|
505 |
+
./dataset/44k/yuuka/314228.wav
|
506 |
+
./dataset/44k/yuuka/652599.wav
|
507 |
+
./dataset/44k/yuuka/7_28.wav
|
508 |
+
./dataset/44k/yuuka/3_140.wav
|
509 |
+
./dataset/44k/yuuka/7_3.wav
|
510 |
+
./dataset/44k/yuuka/915926.wav
|
511 |
+
./dataset/44k/yuuka/3_183.wav
|
512 |
+
./dataset/44k/yuuka/7_13.wav
|
513 |
+
./dataset/44k/yuuka/3_137.wav
|
514 |
+
./dataset/44k/yuuka/968783.wav
|
515 |
+
./dataset/44k/yuuka/1_52.wav
|
516 |
+
./dataset/44k/yuuka/4_66.wav
|
517 |
+
./dataset/44k/yuuka/5_2.wav
|
518 |
+
./dataset/44k/yuuka/5_9.wav
|
519 |
+
./dataset/44k/yuuka/5_70.wav
|
520 |
+
./dataset/44k/yuuka/7_83.wav
|
521 |
+
./dataset/44k/yuuka/8_17.wav
|
522 |
+
./dataset/44k/yuuka/5_7.wav
|
523 |
+
./dataset/44k/yuuka/1_70.wav
|
524 |
+
./dataset/44k/yuuka/5_89.wav
|
525 |
+
./dataset/44k/yuuka/3_9.wav
|
526 |
+
./dataset/44k/yuuka/3_84.wav
|
527 |
+
./dataset/44k/yuuka/1_29.wav
|
528 |
+
./dataset/44k/yuuka/6_15.wav
|
529 |
+
./dataset/44k/yuuka/884738.wav
|
530 |
+
./dataset/44k/yuuka/1_72.wav
|
531 |
+
./dataset/44k/yuuka/168875.wav
|
532 |
+
./dataset/44k/yuuka/833141.wav
|
533 |
+
./dataset/44k/yuuka/7_68.wav
|
534 |
+
./dataset/44k/yuuka/7_41.wav
|
535 |
+
./dataset/44k/yuuka/4_0.wav
|
536 |
+
./dataset/44k/yuuka/7_48.wav
|
537 |
+
./dataset/44k/yuuka/9_81.wav
|
538 |
+
./dataset/44k/yuuka/4_44.wav
|
539 |
+
./dataset/44k/yuuka/958019.wav
|
540 |
+
./dataset/44k/yuuka/9_50.wav
|
541 |
+
./dataset/44k/yuuka/5_68.wav
|
542 |
+
./dataset/44k/yuuka/3_32.wav
|
543 |
+
./dataset/44k/yuuka/7_106.wav
|
544 |
+
./dataset/44k/yuuka/1_16.wav
|
545 |
+
./dataset/44k/yuuka/5_16.wav
|
546 |
+
./dataset/44k/yuuka/3_20.wav
|
547 |
+
./dataset/44k/yuuka/502529.wav
|
548 |
+
./dataset/44k/yuuka/237547.wav
|
549 |
+
./dataset/44k/yuuka/3_186.wav
|
550 |
+
./dataset/44k/yuuka/audio_27.wav
|
551 |
+
./dataset/44k/yuuka/5_5.wav
|
552 |
+
./dataset/44k/yuuka/7_35.wav
|
553 |
+
./dataset/44k/yuuka/3_120.wav
|
554 |
+
./dataset/44k/yuuka/5_59.wav
|
555 |
+
./dataset/44k/yuuka/7_78.wav
|
556 |
+
./dataset/44k/yuuka/650180.wav
|
557 |
+
./dataset/44k/yuuka/audio_24.wav
|
558 |
+
./dataset/44k/yuuka/678092.wav
|
559 |
+
./dataset/44k/yuuka/6_2.wav
|
560 |
+
./dataset/44k/yuuka/5_23.wav
|
561 |
+
./dataset/44k/yuuka/1_88.wav
|
562 |
+
./dataset/44k/yuuka/240071.wav
|
563 |
+
./dataset/44k/yuuka/1_46.wav
|
564 |
+
./dataset/44k/yuuka/15940.wav
|
565 |
+
./dataset/44k/yuuka/8_22.wav
|
566 |
+
./dataset/44k/yuuka/4_2.wav
|
567 |
+
./dataset/44k/yuuka/5_93.wav
|
568 |
+
./dataset/44k/yuuka/7_87.wav
|
569 |
+
./dataset/44k/yuuka/454791.wav
|
570 |
+
./dataset/44k/yuuka/5_73.wav
|
571 |
+
./dataset/44k/yuuka/1_0.wav
|
572 |
+
./dataset/44k/yuuka/7_4.wav
|
573 |
+
./dataset/44k/yuuka/9_1.wav
|
574 |
+
./dataset/44k/yuuka/586033.wav
|
575 |
+
./dataset/44k/yuuka/1_23.wav
|
576 |
+
./dataset/44k/yuuka/2_27.wav
|
577 |
+
./dataset/44k/yuuka/5_38.wav
|
578 |
+
./dataset/44k/yuuka/4_34.wav
|
579 |
+
./dataset/44k/yuuka/347125.wav
|
580 |
+
./dataset/44k/yuuka/2_15.wav
|
581 |
+
./dataset/44k/yuuka/6_12.wav
|
582 |
+
./dataset/44k/yuuka/1_84.wav
|
583 |
+
./dataset/44k/yuuka/975179.wav
|
584 |
+
./dataset/44k/yuuka/2_25.wav
|
585 |
+
./dataset/44k/yuuka/4_65.wav
|
586 |
+
./dataset/44k/yuuka/9_72.wav
|
587 |
+
./dataset/44k/yuuka/6_8.wav
|
588 |
+
./dataset/44k/yuuka/380298.wav
|
589 |
+
./dataset/44k/yuuka/1_56.wav
|
590 |
+
./dataset/44k/yuuka/1_5.wav
|
591 |
+
./dataset/44k/yuuka/1_94.wav
|
592 |
+
./dataset/44k/yuuka/7_86.wav
|
593 |
+
./dataset/44k/yuuka/7_42.wav
|
594 |
+
./dataset/44k/yuuka/1_64.wav
|
595 |
+
./dataset/44k/yuuka/5_115.wav
|
596 |
+
./dataset/44k/yuuka/audio_26.wav
|
597 |
+
./dataset/44k/yuuka/4_63.wav
|
598 |
+
./dataset/44k/yuuka/5_83.wav
|
599 |
+
./dataset/44k/yuuka/5_64.wav
|
600 |
+
./dataset/44k/yuuka/7_150.wav
|
601 |
+
./dataset/44k/yuuka/7_179.wav
|
602 |
+
./dataset/44k/yuuka/6_35.wav
|
603 |
+
./dataset/44k/yuuka/7_9.wav
|
604 |
+
./dataset/44k/yuuka/3_127.wav
|
605 |
+
./dataset/44k/yuuka/1_21.wav
|
606 |
+
./dataset/44k/yuuka/5_31.wav
|
607 |
+
./dataset/44k/yuuka/5_78.wav
|
608 |
+
./dataset/44k/yuuka/9_6.wav
|
609 |
+
./dataset/44k/yuuka/4_71.wav
|
610 |
+
./dataset/44k/yuuka/2_9.wav
|
611 |
+
./dataset/44k/yuuka/617112.wav
|
612 |
+
./dataset/44k/yuuka/8_28.wav
|
613 |
+
./dataset/44k/yuuka/5_11.wav
|
614 |
+
./dataset/44k/yuuka/832708.wav
|
615 |
+
./dataset/44k/yuuka/8_0.wav
|
616 |
+
./dataset/44k/yuuka/540598.wav
|
617 |
+
./dataset/44k/yuuka/7_38.wav
|
618 |
+
./dataset/44k/yuuka/1_71.wav
|
619 |
+
./dataset/44k/yuuka/6_37.wav
|
620 |
+
./dataset/44k/yuuka/394815.wav
|
621 |
+
./dataset/44k/yuuka/9_24.wav
|
622 |
+
./dataset/44k/yuuka/5_49.wav
|
623 |
+
./dataset/44k/yuuka/3_103.wav
|
624 |
+
./dataset/44k/yuuka/1_90.wav
|
625 |
+
./dataset/44k/yuuka/9_13.wav
|
626 |
+
./dataset/44k/yuuka/66052.wav
|
627 |
+
./dataset/44k/yuuka/1_96.wav
|
628 |
+
./dataset/44k/yuuka/3_141.wav
|
629 |
+
./dataset/44k/yuuka/1_40.wav
|
630 |
+
./dataset/44k/yuuka/2_17.wav
|
631 |
+
./dataset/44k/yuuka/7_88.wav
|
632 |
+
./dataset/44k/yuuka/386393.wav
|
633 |
+
./dataset/44k/yuuka/2_10.wav
|
634 |
+
./dataset/44k/yuuka/4_79.wav
|
635 |
+
./dataset/44k/yuuka/9_33.wav
|
636 |
+
./dataset/44k/yuuka/7_91.wav
|
637 |
+
./dataset/44k/yuuka/audio_33.wav
|
638 |
+
./dataset/44k/yuuka/7_0.wav
|
639 |
+
./dataset/44k/yuuka/3_138.wav
|
640 |
+
./dataset/44k/yuuka/872587.wav
|
641 |
+
./dataset/44k/yuuka/7_122.wav
|
642 |
+
./dataset/44k/yuuka/40927.wav
|
643 |
+
./dataset/44k/yuuka/5_33.wav
|
644 |
+
./dataset/44k/yuuka/4_11.wav
|
645 |
+
./dataset/44k/yuuka/4_40.wav
|
646 |
+
./dataset/44k/yuuka/3_28.wav
|
647 |
+
./dataset/44k/yuuka/audio_37.wav
|
648 |
+
./dataset/44k/yuuka/228114.wav
|
649 |
+
./dataset/44k/yuuka/629546.wav
|
650 |
+
./dataset/44k/yuuka/1_100.wav
|
651 |
+
./dataset/44k/yuuka/4_62.wav
|
652 |
+
./dataset/44k/yuuka/1_6.wav
|
653 |
+
./dataset/44k/yuuka/650930.wav
|
654 |
+
./dataset/44k/yuuka/7_121.wav
|
655 |
+
./dataset/44k/yuuka/1_95.wav
|
656 |
+
./dataset/44k/yuuka/audio_20.wav
|
657 |
+
./dataset/44k/yuuka/752079.wav
|
658 |
+
./dataset/44k/yuuka/7_33.wav
|
659 |
+
./dataset/44k/yuuka/1_99.wav
|
660 |
+
./dataset/44k/yuuka/5_1.wav
|
661 |
+
./dataset/44k/yuuka/571895.wav
|
662 |
+
./dataset/44k/yuuka/3_8.wav
|
663 |
+
./dataset/44k/yuuka/5_99.wav
|
664 |
+
./dataset/44k/yuuka/5_14.wav
|
665 |
+
./dataset/44k/yuuka/3_68.wav
|
666 |
+
./dataset/44k/yuuka/7_161.wav
|
667 |
+
./dataset/44k/yuuka/2_16.wav
|
668 |
+
./dataset/44k/yuuka/audio_2.wav
|
669 |
+
./dataset/44k/yuuka/2_4.wav
|
670 |
+
./dataset/44k/yuuka/1_3.wav
|
671 |
+
./dataset/44k/yuuka/260935.wav
|
672 |
+
./dataset/44k/yuuka/3_152.wav
|
673 |
+
./dataset/44k/yuuka/4_35.wav
|
674 |
+
./dataset/44k/yuuka/617923.wav
|
675 |
+
./dataset/44k/yuuka/5_98.wav
|
676 |
+
./dataset/44k/yuuka/4_49.wav
|
677 |
+
./dataset/44k/yuuka/audio_43.wav
|
678 |
+
./dataset/44k/yuuka/73560.wav
|
679 |
+
./dataset/44k/yuuka/3_144.wav
|
680 |
+
./dataset/44k/yuuka/5_82.wav
|
681 |
+
./dataset/44k/yuuka/4_7.wav
|
682 |
+
./dataset/44k/yuuka/651496.wav
|
683 |
+
./dataset/44k/yuuka/3_49.wav
|
684 |
+
./dataset/44k/yuuka/audio_6.wav
|
685 |
+
./dataset/44k/yuuka/9_71.wav
|
686 |
+
./dataset/44k/yuuka/1_59.wav
|
687 |
+
./dataset/44k/yuuka/3_25.wav
|
688 |
+
./dataset/44k/yuuka/7_92.wav
|
689 |
+
./dataset/44k/yuuka/7_46.wav
|
690 |
+
./dataset/44k/yuuka/4_73.wav
|
691 |
+
./dataset/44k/yuuka/7_136.wav
|
692 |
+
./dataset/44k/yuuka/9_79.wav
|
693 |
+
./dataset/44k/yuuka/3_175.wav
|
694 |
+
./dataset/44k/yuuka/9_41.wav
|
695 |
+
./dataset/44k/yuuka/9_31.wav
|
696 |
+
./dataset/44k/yuuka/761979.wav
|
697 |
+
./dataset/44k/yuuka/3_83.wav
|
698 |
+
./dataset/44k/yuuka/3_177.wav
|
699 |
+
./dataset/44k/yuuka/7_163.wav
|
700 |
+
./dataset/44k/yuuka/3_43.wav
|
701 |
+
./dataset/44k/yuuka/3_37.wav
|
702 |
+
./dataset/44k/yuuka/8_2.wav
|
703 |
+
./dataset/44k/yuuka/8_10.wav
|
704 |
+
./dataset/44k/yuuka/820939.wav
|
705 |
+
./dataset/44k/yuuka/778182.wav
|
706 |
+
./dataset/44k/yuuka/6_31.wav
|
707 |
+
./dataset/44k/yuuka/3_164.wav
|
708 |
+
./dataset/44k/yuuka/5_32.wav
|
709 |
+
./dataset/44k/yuuka/215854.wav
|
710 |
+
./dataset/44k/yuuka/6_5.wav
|
711 |
+
./dataset/44k/yuuka/3_109.wav
|
712 |
+
./dataset/44k/yuuka/6_42.wav
|
713 |
+
./dataset/44k/yuuka/188142.wav
|
714 |
+
./dataset/44k/yuuka/6_40.wav
|
715 |
+
./dataset/44k/yuuka/4_30.wav
|
716 |
+
./dataset/44k/yuuka/3_161.wav
|
717 |
+
./dataset/44k/yuuka/7_62.wav
|
718 |
+
./dataset/44k/yuuka/2_22.wav
|
719 |
+
./dataset/44k/yuuka/4_69.wav
|
720 |
+
./dataset/44k/yuuka/4_6.wav
|
721 |
+
./dataset/44k/yuuka/577791.wav
|
722 |
+
./dataset/44k/yuuka/723735.wav
|
723 |
+
./dataset/44k/yuuka/7_90.wav
|
724 |
+
./dataset/44k/yuuka/5_96.wav
|
725 |
+
./dataset/44k/yuuka/1_82.wav
|
726 |
+
./dataset/44k/yuuka/225368.wav
|
727 |
+
./dataset/44k/yuuka/audio_31.wav
|
728 |
+
./dataset/44k/yuuka/3_130.wav
|
729 |
+
./dataset/44k/yuuka/audio_39.wav
|
730 |
+
./dataset/44k/yuuka/7_153.wav
|
731 |
+
./dataset/44k/yuuka/7_183.wav
|
732 |
+
./dataset/44k/yuuka/870812.wav
|
733 |
+
./dataset/44k/yuuka/5_114.wav
|
734 |
+
./dataset/44k/yuuka/719896.wav
|
735 |
+
./dataset/44k/yuuka/5_65.wav
|
736 |
+
./dataset/44k/yuuka/269297.wav
|
737 |
+
./dataset/44k/yuuka/3_124.wav
|
738 |
+
./dataset/44k/yuuka/9_57.wav
|
739 |
+
./dataset/44k/yuuka/7_18.wav
|
740 |
+
./dataset/44k/yuuka/619226.wav
|
741 |
+
./dataset/44k/yuuka/207781.wav
|
742 |
+
./dataset/44k/yuuka/5_28.wav
|
743 |
+
./dataset/44k/yuuka/5_71.wav
|
744 |
+
./dataset/44k/yuuka/143646.wav
|
745 |
+
./dataset/44k/yuuka/383188.wav
|
746 |
+
./dataset/44k/yuuka/7_131.wav
|
747 |
+
./dataset/44k/yuuka/3_92.wav
|
748 |
+
./dataset/44k/yuuka/892318.wav
|
749 |
+
./dataset/44k/yuuka/1_57.wav
|
750 |
+
./dataset/44k/yuuka/audio_21.wav
|
751 |
+
./dataset/44k/yuuka/4_57.wav
|
752 |
+
./dataset/44k/yuuka/3_96.wav
|
753 |
+
./dataset/44k/yuuka/7_12.wav
|
754 |
+
./dataset/44k/yuuka/6_29.wav
|
755 |
+
./dataset/44k/yuuka/3_3.wav
|
756 |
+
./dataset/44k/yuuka/7_97.wav
|
757 |
+
./dataset/44k/yuuka/1_54.wav
|
758 |
+
./dataset/44k/yuuka/9_78.wav
|
759 |
+
./dataset/44k/yuuka/76879.wav
|
760 |
+
./dataset/44k/yuuka/3_123.wav
|
761 |
+
./dataset/44k/yuuka/1_91.wav
|
762 |
+
./dataset/44k/yuuka/7_138.wav
|
763 |
+
./dataset/44k/yuuka/7_77.wav
|
764 |
+
./dataset/44k/yuuka/5_55.wav
|
765 |
+
./dataset/44k/yuuka/2_29.wav
|
766 |
+
./dataset/44k/yuuka/2_19.wav
|
767 |
+
./dataset/44k/yuuka/4_45.wav
|
768 |
+
./dataset/44k/yuuka/7_84.wav
|
769 |
+
./dataset/44k/yuuka/3_143.wav
|
770 |
+
./dataset/44k/yuuka/1_8.wav
|
771 |
+
./dataset/44k/yuuka/3_64.wav
|
772 |
+
./dataset/44k/yuuka/1_30.wav
|
773 |
+
./dataset/44k/yuuka/3_10.wav
|
774 |
+
./dataset/44k/yuuka/854231.wav
|
775 |
+
./dataset/44k/yuuka/6_26.wav
|
776 |
+
./dataset/44k/yuuka/3_23.wav
|
777 |
+
./dataset/44k/yuuka/5_44.wav
|
778 |
+
./dataset/44k/yuuka/7_45.wav
|
779 |
+
./dataset/44k/yuuka/5_10.wav
|
780 |
+
./dataset/44k/yuuka/7_180.wav
|
781 |
+
./dataset/44k/yuuka/9_12.wav
|
782 |
+
./dataset/44k/yuuka/audio_8.wav
|
783 |
+
./dataset/44k/yuuka/3_35.wav
|
784 |
+
./dataset/44k/yuuka/565217.wav
|
785 |
+
./dataset/44k/yuuka/7_63.wav
|
786 |
+
./dataset/44k/yuuka/5_75.wav
|
787 |
+
./dataset/44k/yuuka/1_2.wav
|
788 |
+
./dataset/44k/yuuka/9_8.wav
|
789 |
+
./dataset/44k/yuuka/5_94.wav
|
790 |
+
./dataset/44k/yuuka/1_75.wav
|
791 |
+
./dataset/44k/yuuka/8_8.wav
|
792 |
+
./dataset/44k/yuuka/7_141.wav
|
793 |
+
./dataset/44k/yuuka/5_17.wav
|
794 |
+
./dataset/44k/yuuka/853514.wav
|
795 |
+
./dataset/44k/yuuka/4_78.wav
|
796 |
+
./dataset/44k/yuuka/5_116.wav
|
797 |
+
./dataset/44k/yuuka/448774.wav
|
798 |
+
./dataset/44k/yuuka/8_13.wav
|
799 |
+
./dataset/44k/yuuka/4_13.wav
|
800 |
+
./dataset/44k/yuuka/4_8.wav
|
801 |
+
./dataset/44k/yuuka/5_60.wav
|
802 |
+
./dataset/44k/yuuka/321094.wav
|
803 |
+
./dataset/44k/yuuka/859348.wav
|
804 |
+
./dataset/44k/yuuka/9_19.wav
|
805 |
+
./dataset/44k/yuuka/1_27.wav
|
806 |
+
./dataset/44k/yuuka/4_58.wav
|
807 |
+
./dataset/44k/yuuka/1_53.wav
|
808 |
+
./dataset/44k/yuuka/522647.wav
|
809 |
+
./dataset/44k/yuuka/73298.wav
|
810 |
+
./dataset/44k/yuuka/9_2.wav
|
811 |
+
./dataset/44k/yuuka/3_139.wav
|
812 |
+
./dataset/44k/yuuka/9_55.wav
|
813 |
+
./dataset/44k/yuuka/1_115.wav
|
814 |
+
./dataset/44k/yuuka/796714.wav
|
815 |
+
./dataset/44k/yuuka/5_43.wav
|
816 |
+
./dataset/44k/yuuka/3_57.wav
|
817 |
+
./dataset/44k/yuuka/4_70.wav
|
818 |
+
./dataset/44k/yuuka/4_81.wav
|
819 |
+
./dataset/44k/yuuka/4_31.wav
|
820 |
+
./dataset/44k/yuuka/3_88.wav
|
821 |
+
./dataset/44k/yuuka/5_57.wav
|
822 |
+
./dataset/44k/yuuka/6_19.wav
|
823 |
+
./dataset/44k/yuuka/6_10.wav
|
824 |
+
./dataset/44k/yuuka/9_20.wav
|
825 |
+
./dataset/44k/yuuka/5_37.wav
|
826 |
+
./dataset/44k/yuuka/6_43.wav
|
827 |
+
./dataset/44k/yuuka/9_23.wav
|
828 |
+
./dataset/44k/yuuka/7_60.wav
|
829 |
+
./dataset/44k/yuuka/3_159.wav
|
830 |
+
./dataset/44k/yuuka/182426.wav
|
831 |
+
./dataset/44k/yuuka/1_50.wav
|
832 |
+
./dataset/44k/yuuka/5_81.wav
|
833 |
+
./dataset/44k/yuuka/4_64.wav
|
834 |
+
./dataset/44k/yuuka/5_84.wav
|
835 |
+
./dataset/44k/yuuka/5_29.wav
|
836 |
+
./dataset/44k/yuuka/2_8.wav
|
837 |
+
./dataset/44k/yuuka/4_32.wav
|
838 |
+
./dataset/44k/yuuka/7_47.wav
|
839 |
+
./dataset/44k/yuuka/7_109.wav
|
840 |
+
./dataset/44k/yuuka/130059.wav
|
841 |
+
./dataset/44k/yuuka/1_42.wav
|
842 |
+
./dataset/44k/yuuka/5_47.wav
|
843 |
+
./dataset/44k/yuuka/9_40.wav
|
844 |
+
./dataset/44k/yuuka/4_75.wav
|
845 |
+
./dataset/44k/yuuka/1_63.wav
|
846 |
+
./dataset/44k/yuuka/9_9.wav
|
847 |
+
./dataset/44k/yuuka/208859.wav
|
848 |
+
./dataset/44k/yuuka/5_56.wav
|
849 |
+
./dataset/44k/yuuka/9_36.wav
|
850 |
+
./dataset/44k/yuuka/187864.wav
|
851 |
+
./dataset/44k/yuuka/7_21.wav
|
852 |
+
./dataset/44k/yuuka/7_144.wav
|
853 |
+
./dataset/44k/yuuka/7_22.wav
|
854 |
+
./dataset/44k/yuuka/7_34.wav
|
855 |
+
./dataset/44k/yuuka/1_65.wav
|
856 |
+
./dataset/44k/yuuka/6_28.wav
|
857 |
+
./dataset/44k/yuuka/7_19.wav
|
filelists/val.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
./dataset/44k/yuuka/3_106.wav
|
2 |
+
./dataset/44k/yuuka/3_7.wav
|
flask_api.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
import soundfile
|
6 |
+
import paddle
|
7 |
+
import paddle.audio as paddleaudio
|
8 |
+
from flask import Flask, request, send_file
|
9 |
+
from flask_cors import CORS
|
10 |
+
|
11 |
+
from inference.infer_tool import Svc, RealTimeVC
|
12 |
+
|
13 |
+
app = Flask(__name__)
|
14 |
+
|
15 |
+
CORS(app)
|
16 |
+
|
17 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
18 |
+
|
19 |
+
|
20 |
+
@app.route("/voiceChangeModel", methods=["POST"])
|
21 |
+
def voice_change_model():
|
22 |
+
request_form = request.form
|
23 |
+
wave_file = request.files.get("sample", None)
|
24 |
+
# 变调信息
|
25 |
+
f_pitch_change = float(request_form.get("fPitchChange", 0))
|
26 |
+
# DAW所需的采样率
|
27 |
+
daw_sample = int(float(request_form.get("sampleRate", 0)))
|
28 |
+
speaker_id = int(float(request_form.get("sSpeakId", 0)))
|
29 |
+
# http获得wav文件并转换
|
30 |
+
input_wav_path = io.BytesIO(wave_file.read())
|
31 |
+
|
32 |
+
# 模型推理
|
33 |
+
if raw_infer:
|
34 |
+
out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
|
35 |
+
tar_audio = librosa.resample(out_audio.numpy(), svc_model.target_sample, daw_sample)
|
36 |
+
else:
|
37 |
+
out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path)
|
38 |
+
tar_audio = librosa.resample(out_audio, svc_model.target_sample, daw_sample)
|
39 |
+
# 返回音频
|
40 |
+
out_wav_path = io.BytesIO()
|
41 |
+
soundfile.write(out_wav_path, tar_audio, daw_sample, format="wav")
|
42 |
+
out_wav_path.seek(0)
|
43 |
+
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
|
44 |
+
|
45 |
+
|
46 |
+
if __name__ == '__main__':
|
47 |
+
# 启用则为直接切片合成,False为交叉淡化方式
|
48 |
+
# vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
|
49 |
+
# 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
|
50 |
+
raw_infer = True
|
51 |
+
# 每个模型和config是唯一对应的
|
52 |
+
model_name = "logs/44k/G_1005.pdparams"
|
53 |
+
config_name = "configs/config.json"
|
54 |
+
svc_model = Svc(model_name, config_name)
|
55 |
+
svc = RealTimeVC()
|
56 |
+
# 此处与vst插件对应,不建议更改
|
57 |
+
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
|
hubert/__init__.py
ADDED
File without changes
|
hubert/hubert4.0.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc348818d386f8cff3332ab4bcd77e5870c373c492c896664092fd7230122a32
|
3 |
+
size 293347531
|
hubert/hubert_model.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import paddle
|
6 |
+
import paddle.nn as nn
|
7 |
+
import paddle.nn.functional as t_func
|
8 |
+
#from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
9 |
+
|
10 |
+
|
11 |
+
class Hubert(paddle.nn.Layer):
|
12 |
+
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
13 |
+
super().__init__()
|
14 |
+
self._mask = mask
|
15 |
+
self.feature_extractor = FeatureExtractor()
|
16 |
+
self.feature_projection = FeatureProjection()
|
17 |
+
self.positional_embedding = PositionalConvEmbedding()
|
18 |
+
self.norm = nn.LayerNorm(768)
|
19 |
+
self.dropout = nn.Dropout(0.1)
|
20 |
+
self.encoder = TransformerEncoder(
|
21 |
+
nn.TransformerEncoderLayer(
|
22 |
+
768, 12, 3072, activation="gelu"
|
23 |
+
),
|
24 |
+
12,
|
25 |
+
)
|
26 |
+
self.proj = nn.Linear(768, 256)
|
27 |
+
|
28 |
+
self.masked_spec_embed = paddle.create_parameter([768],dtype = 'float32')
|
29 |
+
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
30 |
+
|
31 |
+
def mask(self, x: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
32 |
+
mask = None
|
33 |
+
if self.training and self._mask:
|
34 |
+
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, None, 2)
|
35 |
+
x[mask] = self.masked_spec_embed
|
36 |
+
return x, mask
|
37 |
+
|
38 |
+
def encode(
|
39 |
+
self, x: paddle.Tensor, layer: Optional[int] = None
|
40 |
+
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
41 |
+
x = self.feature_extractor(x)
|
42 |
+
x = self.feature_projection(x.transpose([0, 2, 1]))
|
43 |
+
x, mask = self.mask(x)
|
44 |
+
x = x + self.positional_embedding(x)
|
45 |
+
x = self.dropout(self.norm(x))
|
46 |
+
x = self.encoder(x, output_layer=layer)
|
47 |
+
return x, mask
|
48 |
+
|
49 |
+
def logits(self, x: paddle.Tensor) -> paddle.Tensor:
|
50 |
+
logits = t_func.cosine_similarity(
|
51 |
+
x.unsqueeze(2),
|
52 |
+
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
53 |
+
axis=-1,
|
54 |
+
)
|
55 |
+
return logits / 0.1
|
56 |
+
|
57 |
+
def forward(self, x: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
58 |
+
x, mask = self.encode(x)
|
59 |
+
x = self.proj(x)
|
60 |
+
logits = self.logits(x)
|
61 |
+
return logits, mask
|
62 |
+
|
63 |
+
|
64 |
+
class HubertSoft(Hubert):
|
65 |
+
def __init__(self):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
def units(self, wav: paddle.Tensor) -> paddle.Tensor:
|
69 |
+
wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2),data_format='NCL')
|
70 |
+
x, _ = self.encode(wav)
|
71 |
+
return self.proj(x)
|
72 |
+
|
73 |
+
|
74 |
+
class FeatureExtractor(paddle.nn.Layer):
|
75 |
+
def __init__(self):
|
76 |
+
super().__init__()
|
77 |
+
self.conv0 = nn.Conv1D(1, 512, 10, 5, bias_attr=False)
|
78 |
+
self.norm0 = nn.GroupNorm(512, 512)
|
79 |
+
self.conv1 = nn.Conv1D(512, 512, 3, 2, bias_attr=False)
|
80 |
+
self.conv2 = nn.Conv1D(512, 512, 3, 2, bias_attr=False)
|
81 |
+
self.conv3 = nn.Conv1D(512, 512, 3, 2, bias_attr=False)
|
82 |
+
self.conv4 = nn.Conv1D(512, 512, 3, 2, bias_attr=False)
|
83 |
+
self.conv5 = nn.Conv1D(512, 512, 2, 2, bias_attr=False)
|
84 |
+
self.conv6 = nn.Conv1D(512, 512, 2, 2, bias_attr=False)
|
85 |
+
|
86 |
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
87 |
+
x = t_func.gelu(self.norm0(self.conv0(x)))
|
88 |
+
x = t_func.gelu(self.conv1(x))
|
89 |
+
x = t_func.gelu(self.conv2(x))
|
90 |
+
x = t_func.gelu(self.conv3(x))
|
91 |
+
x = t_func.gelu(self.conv4(x))
|
92 |
+
x = t_func.gelu(self.conv5(x))
|
93 |
+
x = t_func.gelu(self.conv6(x))
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
class FeatureProjection(paddle.nn.Layer):
|
98 |
+
def __init__(self):
|
99 |
+
super().__init__()
|
100 |
+
self.norm = nn.LayerNorm(512)
|
101 |
+
self.projection = nn.Linear(512, 768)
|
102 |
+
self.dropout = nn.Dropout(0.1)
|
103 |
+
|
104 |
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
105 |
+
x = self.norm(x)
|
106 |
+
x = self.projection(x)
|
107 |
+
x = self.dropout(x)
|
108 |
+
return x
|
109 |
+
|
110 |
+
|
111 |
+
class PositionalConvEmbedding(paddle.nn.Layer):
|
112 |
+
def __init__(self):
|
113 |
+
super().__init__()
|
114 |
+
self.conv = nn.Conv1D(
|
115 |
+
768,
|
116 |
+
768,
|
117 |
+
kernel_size=128,
|
118 |
+
padding=128 // 2,
|
119 |
+
groups=16,
|
120 |
+
)
|
121 |
+
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
122 |
+
|
123 |
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
124 |
+
x = self.conv(x.transpose([0, 2, 1]))
|
125 |
+
x = t_func.gelu(x[:, :, :-1])
|
126 |
+
return x.transpose([0, 2, 1])
|
127 |
+
|
128 |
+
|
129 |
+
class TransformerEncoder(paddle.nn.Layer):
|
130 |
+
def __init__(
|
131 |
+
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
132 |
+
) -> None:
|
133 |
+
super(TransformerEncoder, self).__init__()
|
134 |
+
self.layers = nn.LayerList(
|
135 |
+
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
136 |
+
)
|
137 |
+
self.num_layers = num_layers
|
138 |
+
|
139 |
+
def forward(
|
140 |
+
self,
|
141 |
+
src: paddle.Tensor,
|
142 |
+
mask: paddle.Tensor = None,
|
143 |
+
src_key_padding_mask: paddle.Tensor = None,
|
144 |
+
output_layer: Optional[int] = None,
|
145 |
+
) -> paddle.Tensor:
|
146 |
+
output = src
|
147 |
+
for layer in self.layers[:output_layer]:
|
148 |
+
output = layer(
|
149 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
150 |
+
)
|
151 |
+
return output
|
152 |
+
|
153 |
+
|
154 |
+
def _compute_mask(
|
155 |
+
shape: Tuple[int, int],
|
156 |
+
mask_prob: float,
|
157 |
+
mask_length: int,
|
158 |
+
device: None,
|
159 |
+
min_masks: int = 0,
|
160 |
+
) -> paddle.Tensor:
|
161 |
+
batch_size, sequence_length = shape
|
162 |
+
|
163 |
+
if mask_length < 1:
|
164 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
165 |
+
|
166 |
+
if mask_length > sequence_length:
|
167 |
+
raise ValueError(
|
168 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
169 |
+
)
|
170 |
+
|
171 |
+
# compute number of masked spans in batch
|
172 |
+
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
173 |
+
num_masked_spans = max(num_masked_spans, min_masks)
|
174 |
+
|
175 |
+
# make sure num masked indices <= sequence_length
|
176 |
+
if num_masked_spans * mask_length > sequence_length:
|
177 |
+
num_masked_spans = sequence_length // mask_length
|
178 |
+
|
179 |
+
# SpecAugment mask to fill
|
180 |
+
mask = paddle.zeros((batch_size, sequence_length), dtype='bool')
|
181 |
+
|
182 |
+
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
183 |
+
uniform_dist = paddle.ones(
|
184 |
+
(batch_size, sequence_length - (mask_length - 1))
|
185 |
+
)
|
186 |
+
|
187 |
+
# get random indices to mask
|
188 |
+
mask_indices = paddle.multinomial(uniform_dist, num_masked_spans)
|
189 |
+
|
190 |
+
# expand masked indices to masked spans
|
191 |
+
mask_indices = (
|
192 |
+
mask_indices.unsqueeze(dim=-1)
|
193 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
194 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
195 |
+
)
|
196 |
+
offsets = (
|
197 |
+
paddle.arange(mask_length)[None, None, :]
|
198 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
199 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
200 |
+
)
|
201 |
+
mask_idxs = mask_indices + offsets
|
202 |
+
|
203 |
+
# scatter indices to mask
|
204 |
+
mask = mask.scatter(1, mask_idxs, True)
|
205 |
+
|
206 |
+
return mask
|
207 |
+
|
208 |
+
|
209 |
+
def hubert_soft(
|
210 |
+
path: str,
|
211 |
+
) -> HubertSoft:
|
212 |
+
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
213 |
+
Args:
|
214 |
+
path (str): path of a pretrained model
|
215 |
+
"""
|
216 |
+
hubert = HubertSoft()
|
217 |
+
checkpoint = paddle.load(path)
|
218 |
+
#consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
219 |
+
hubert.set_state_dict(checkpoint)
|
220 |
+
hubert.eval()
|
221 |
+
return hubert
|
222 |
+
|
223 |
+
if __name__ == '__main__':
|
224 |
+
hubert = HubertSoft()
|
225 |
+
d = paddle.load(r'E:\trans\hubert\final.pdparams')
|
226 |
+
hubert.set_state_dict(d)
|
hubert/hubert_model_onnx.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as t_func
|
8 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
9 |
+
|
10 |
+
|
11 |
+
class Hubert(nn.Layer):
|
12 |
+
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
13 |
+
super().__init__()
|
14 |
+
self._mask = mask
|
15 |
+
self.feature_extractor = FeatureExtractor()
|
16 |
+
self.feature_projection = FeatureProjection()
|
17 |
+
self.positional_embedding = PositionalConvEmbedding()
|
18 |
+
self.norm = nn.LayerNorm(768)
|
19 |
+
self.dropout = nn.Dropout(0.1)
|
20 |
+
self.encoder = TransformerEncoder(
|
21 |
+
nn.TransformerEncoderLayer(
|
22 |
+
768, 12, 3072, activation="gelu", batch_first=True
|
23 |
+
),
|
24 |
+
12,
|
25 |
+
)
|
26 |
+
self.proj = nn.Linear(768, 256)
|
27 |
+
|
28 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
|
29 |
+
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
30 |
+
|
31 |
+
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
32 |
+
mask = None
|
33 |
+
if self.training and self._mask:
|
34 |
+
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
|
35 |
+
x[mask] = self.masked_spec_embed.to(x.dtype)
|
36 |
+
return x, mask
|
37 |
+
|
38 |
+
def encode(
|
39 |
+
self, x: torch.Tensor, layer: Optional[int] = None
|
40 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
41 |
+
x = self.feature_extractor(x)
|
42 |
+
x = self.feature_projection(x.transpose(1, 2))
|
43 |
+
x, mask = self.mask(x)
|
44 |
+
x = x + self.positional_embedding(x)
|
45 |
+
x = self.dropout(self.norm(x))
|
46 |
+
x = self.encoder(x, output_layer=layer)
|
47 |
+
return x, mask
|
48 |
+
|
49 |
+
def logits(self, x: torch.Tensor) -> torch.Tensor:
|
50 |
+
logits = torch.cosine_similarity(
|
51 |
+
x.unsqueeze(2),
|
52 |
+
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
53 |
+
dim=-1,
|
54 |
+
)
|
55 |
+
return logits / 0.1
|
56 |
+
|
57 |
+
|
58 |
+
class HubertSoft(Hubert):
|
59 |
+
def __init__(self):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
def units(self, wav: torch.Tensor) -> torch.Tensor:
|
63 |
+
wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
|
64 |
+
x, _ = self.encode(wav)
|
65 |
+
return self.proj(x)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
return self.units(x)
|
69 |
+
|
70 |
+
class FeatureExtractor(nn.Layer):
|
71 |
+
def __init__(self):
|
72 |
+
super().__init__()
|
73 |
+
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
|
74 |
+
self.norm0 = nn.GroupNorm(512, 512)
|
75 |
+
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
76 |
+
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
77 |
+
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
78 |
+
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
79 |
+
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
80 |
+
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
81 |
+
|
82 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
83 |
+
x = t_func.gelu(self.norm0(self.conv0(x)))
|
84 |
+
x = t_func.gelu(self.conv1(x))
|
85 |
+
x = t_func.gelu(self.conv2(x))
|
86 |
+
x = t_func.gelu(self.conv3(x))
|
87 |
+
x = t_func.gelu(self.conv4(x))
|
88 |
+
x = t_func.gelu(self.conv5(x))
|
89 |
+
x = t_func.gelu(self.conv6(x))
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
class FeatureProjection(nn.Layer):
|
94 |
+
def __init__(self):
|
95 |
+
super().__init__()
|
96 |
+
self.norm = nn.LayerNorm(512)
|
97 |
+
self.projection = nn.Linear(512, 768)
|
98 |
+
self.dropout = nn.Dropout(0.1)
|
99 |
+
|
100 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
101 |
+
x = self.norm(x)
|
102 |
+
x = self.projection(x)
|
103 |
+
x = self.dropout(x)
|
104 |
+
return x
|
105 |
+
|
106 |
+
|
107 |
+
class PositionalConvEmbedding(nn.Layer):
|
108 |
+
def __init__(self):
|
109 |
+
super().__init__()
|
110 |
+
self.conv = nn.Conv1d(
|
111 |
+
768,
|
112 |
+
768,
|
113 |
+
kernel_size=128,
|
114 |
+
padding=128 // 2,
|
115 |
+
groups=16,
|
116 |
+
)
|
117 |
+
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
118 |
+
|
119 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
120 |
+
x = self.conv(x.transpose(1, 2))
|
121 |
+
x = t_func.gelu(x[:, :, :-1])
|
122 |
+
return x.transpose(1, 2)
|
123 |
+
|
124 |
+
|
125 |
+
class TransformerEncoder(nn.Layer):
|
126 |
+
def __init__(
|
127 |
+
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
128 |
+
) -> None:
|
129 |
+
super(TransformerEncoder, self).__init__()
|
130 |
+
self.layers = nn.LayerList(
|
131 |
+
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
132 |
+
)
|
133 |
+
self.num_layers = num_layers
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
src: torch.Tensor,
|
138 |
+
mask: torch.Tensor = None,
|
139 |
+
src_key_padding_mask: torch.Tensor = None,
|
140 |
+
output_layer: Optional[int] = None,
|
141 |
+
) -> torch.Tensor:
|
142 |
+
output = src
|
143 |
+
for layer in self.layers[:output_layer]:
|
144 |
+
output = layer(
|
145 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
146 |
+
)
|
147 |
+
return output
|
148 |
+
|
149 |
+
|
150 |
+
def _compute_mask(
|
151 |
+
shape: Tuple[int, int],
|
152 |
+
mask_prob: float,
|
153 |
+
mask_length: int,
|
154 |
+
device: torch.device,
|
155 |
+
min_masks: int = 0,
|
156 |
+
) -> torch.Tensor:
|
157 |
+
batch_size, sequence_length = shape
|
158 |
+
|
159 |
+
if mask_length < 1:
|
160 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
161 |
+
|
162 |
+
if mask_length > sequence_length:
|
163 |
+
raise ValueError(
|
164 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
165 |
+
)
|
166 |
+
|
167 |
+
# compute number of masked spans in batch
|
168 |
+
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
169 |
+
num_masked_spans = max(num_masked_spans, min_masks)
|
170 |
+
|
171 |
+
# make sure num masked indices <= sequence_length
|
172 |
+
if num_masked_spans * mask_length > sequence_length:
|
173 |
+
num_masked_spans = sequence_length // mask_length
|
174 |
+
|
175 |
+
# SpecAugment mask to fill
|
176 |
+
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
|
177 |
+
|
178 |
+
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
179 |
+
uniform_dist = torch.ones(
|
180 |
+
(batch_size, sequence_length - (mask_length - 1)), device=device
|
181 |
+
)
|
182 |
+
|
183 |
+
# get random indices to mask
|
184 |
+
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
|
185 |
+
|
186 |
+
# expand masked indices to masked spans
|
187 |
+
mask_indices = (
|
188 |
+
mask_indices.unsqueeze(dim=-1)
|
189 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
190 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
191 |
+
)
|
192 |
+
offsets = (
|
193 |
+
torch.arange(mask_length, device=device)[None, None, :]
|
194 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
195 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
196 |
+
)
|
197 |
+
mask_idxs = mask_indices + offsets
|
198 |
+
|
199 |
+
# scatter indices to mask
|
200 |
+
mask = mask.scatter(1, mask_idxs, True)
|
201 |
+
|
202 |
+
return mask
|
203 |
+
|
204 |
+
|
205 |
+
def hubert_soft(
|
206 |
+
path: str,
|
207 |
+
) -> HubertSoft:
|
208 |
+
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
209 |
+
Args:
|
210 |
+
path (str): path of a pretrained model
|
211 |
+
"""
|
212 |
+
hubert = HubertSoft()
|
213 |
+
checkpoint = torch.load(path)
|
214 |
+
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
215 |
+
hubert.load_state_dict(checkpoint)
|
216 |
+
hubert.eval()
|
217 |
+
return hubert
|
inference/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
'''梅花三弄再回首花了一个小时迁移的模块'''
|
inference/chunks_temp.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
inference/infer_tool.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import io
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from pathlib import Path
|
8 |
+
from inference import slicer
|
9 |
+
|
10 |
+
import librosa
|
11 |
+
import numpy as np
|
12 |
+
# import onnxruntime
|
13 |
+
import parselmouth
|
14 |
+
import soundfile
|
15 |
+
import paddle
|
16 |
+
import paddle.audio as paddleaudio
|
17 |
+
import paddleaudio
|
18 |
+
|
19 |
+
import cluster
|
20 |
+
#from hubert import hubert_model
|
21 |
+
import utils
|
22 |
+
from models import SynthesizerTrn,SynthesizerTrn_test
|
23 |
+
|
24 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
25 |
+
paddle.audio.backends.set_backend('soundfile')
|
26 |
+
|
27 |
+
def read_temp(file_name):
|
28 |
+
if not os.path.exists(file_name):
|
29 |
+
with open(file_name, "w") as f:
|
30 |
+
f.write(json.dumps({"info": "temp_dict"}))
|
31 |
+
return {}
|
32 |
+
else:
|
33 |
+
try:
|
34 |
+
with open(file_name, "r") as f:
|
35 |
+
data = f.read()
|
36 |
+
data_dict = json.loads(data)
|
37 |
+
if os.path.getsize(file_name) > 50 * 1024 * 1024:
|
38 |
+
f_name = file_name.replace("\\", "/").split("/")[-1]
|
39 |
+
print(f"clean {f_name}")
|
40 |
+
for wav_hash in list(data_dict.keys()):
|
41 |
+
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
|
42 |
+
del data_dict[wav_hash]
|
43 |
+
except Exception as e:
|
44 |
+
print(e)
|
45 |
+
print(f"{file_name} error,auto rebuild file")
|
46 |
+
data_dict = {"info": "temp_dict"}
|
47 |
+
return data_dict
|
48 |
+
|
49 |
+
|
50 |
+
def write_temp(file_name, data):
|
51 |
+
with open(file_name, "w") as f:
|
52 |
+
f.write(json.dumps(data))
|
53 |
+
|
54 |
+
|
55 |
+
def timeit(func):
|
56 |
+
def run(*args, **kwargs):
|
57 |
+
t = time.time()
|
58 |
+
res = func(*args, **kwargs)
|
59 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
60 |
+
return res
|
61 |
+
|
62 |
+
return run
|
63 |
+
|
64 |
+
|
65 |
+
def format_wav(audio_path):
|
66 |
+
if Path(audio_path).suffix == '.wav':
|
67 |
+
return
|
68 |
+
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
|
69 |
+
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
|
70 |
+
|
71 |
+
|
72 |
+
def get_end_file(dir_path, end):
|
73 |
+
file_lists = []
|
74 |
+
for root, dirs, files in os.walk(dir_path):
|
75 |
+
files = [f for f in files if f[0] != '.']
|
76 |
+
dirs[:] = [d for d in dirs if d[0] != '.']
|
77 |
+
for f_file in files:
|
78 |
+
if f_file.endswith(end):
|
79 |
+
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
|
80 |
+
return file_lists
|
81 |
+
|
82 |
+
|
83 |
+
def get_md5(content):
|
84 |
+
return hashlib.new("md5", content).hexdigest()
|
85 |
+
|
86 |
+
def fill_a_to_b(a, b):
|
87 |
+
if len(a) < len(b):
|
88 |
+
for _ in range(0, len(b) - len(a)):
|
89 |
+
a.append(a[0])
|
90 |
+
|
91 |
+
def mkdir(paths: list):
|
92 |
+
for path in paths:
|
93 |
+
if not os.path.exists(path):
|
94 |
+
os.mkdir(path)
|
95 |
+
|
96 |
+
def pad_array(arr, target_length):
|
97 |
+
current_length = arr.shape[0]
|
98 |
+
if current_length >= target_length:
|
99 |
+
return arr
|
100 |
+
else:
|
101 |
+
pad_width = target_length - current_length
|
102 |
+
pad_left = pad_width // 2
|
103 |
+
pad_right = pad_width - pad_left
|
104 |
+
padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
|
105 |
+
return padded_arr
|
106 |
+
|
107 |
+
|
108 |
+
class Svc(object):
|
109 |
+
def __init__(self, net_g_path, config_path,
|
110 |
+
device=None,
|
111 |
+
cluster_model_path="./logs/44k/kmeans_10000.pdparams",mode="train"):
|
112 |
+
self.net_g_path = net_g_path
|
113 |
+
if device is None:
|
114 |
+
self.dev = "gpu:0" if paddle.device.is_compiled_with_cuda() else "cpu"
|
115 |
+
else:
|
116 |
+
self.dev = device
|
117 |
+
self.net_g_ms = None
|
118 |
+
self.hps_ms = utils.get_hparams_from_file(config_path)
|
119 |
+
self.target_sample = self.hps_ms.data.sampling_rate
|
120 |
+
self.hop_size = self.hps_ms.data.hop_length
|
121 |
+
self.spk2id = self.hps_ms.spk
|
122 |
+
# 加载hubert
|
123 |
+
self.hubert_model = utils.get_hubert_model()
|
124 |
+
self.load_model(mode)
|
125 |
+
if os.path.exists(cluster_model_path):
|
126 |
+
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
|
127 |
+
|
128 |
+
def load_model(self,mode):
|
129 |
+
# 获取模型配置
|
130 |
+
if mode == "train":
|
131 |
+
self.net_g_ms = SynthesizerTrn(
|
132 |
+
self.hps_ms.data.filter_length // 2 + 1,
|
133 |
+
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
134 |
+
**self.hps_ms.model)
|
135 |
+
elif mode == "test":
|
136 |
+
self.net_g_ms = SynthesizerTrn_test(
|
137 |
+
self.hps_ms.data.filter_length // 2 + 1,
|
138 |
+
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
139 |
+
**self.hps_ms.model)
|
140 |
+
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
|
141 |
+
if "half" in self.net_g_path and paddle.device.is_compiled_with_cuda():
|
142 |
+
self.net_g_ms.half().eval()
|
143 |
+
self.net_g_ms.half().to(self.dev)
|
144 |
+
else:
|
145 |
+
self.net_g_ms.eval()
|
146 |
+
self.net_g_ms.to(self.dev)
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker):
|
151 |
+
|
152 |
+
wav, sr = librosa.load(in_path, sr=self.target_sample)
|
153 |
+
|
154 |
+
f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
|
155 |
+
f0, uv = utils.interpolate_f0(f0)
|
156 |
+
f0 = paddle.to_tensor(f0,dtype = ('float32'))
|
157 |
+
uv = paddle.to_tensor(uv,dtype = ('float32'))
|
158 |
+
f0 = f0 * 2 ** (tran / 12)
|
159 |
+
f0 = f0.unsqueeze(0)
|
160 |
+
uv = uv.unsqueeze(0)
|
161 |
+
|
162 |
+
wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
|
163 |
+
wav16k = paddle.to_tensor(wav16k)
|
164 |
+
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
|
165 |
+
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
166 |
+
|
167 |
+
if cluster_infer_ratio !=0:
|
168 |
+
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
|
169 |
+
cluster_c = paddle.to_tensor(cluster_c,dtype = 'float32')
|
170 |
+
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
|
171 |
+
|
172 |
+
c = c.unsqueeze(0)
|
173 |
+
return c, f0, uv
|
174 |
+
|
175 |
+
def infer(self, speaker, tran, raw_path,
|
176 |
+
cluster_infer_ratio=0,
|
177 |
+
auto_predict_f0=False,
|
178 |
+
noice_scale=0.4):
|
179 |
+
speaker_id = 0
|
180 |
+
sid = paddle.to_tensor([int(speaker_id)],dtype = 'int64').unsqueeze(0)
|
181 |
+
c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker)
|
182 |
+
if "half" in self.net_g_path and paddle.device.is_compiled_with_cuda():
|
183 |
+
c = c.half()
|
184 |
+
with paddle.no_grad():
|
185 |
+
start = time.time()
|
186 |
+
audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].detach().astype('float32')
|
187 |
+
use_time = time.time() - start
|
188 |
+
print("vits耗时:{}".format(use_time))
|
189 |
+
return audio, audio.shape[-1]
|
190 |
+
|
191 |
+
def slice_inference(self,raw_audio_path, spk, tran, slice_db,cluster_infer_ratio, auto_predict_f0,noice_scale, pad_seconds=0.5,empty_cache=False):
|
192 |
+
wav_path = raw_audio_path
|
193 |
+
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
194 |
+
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
195 |
+
|
196 |
+
audio = []
|
197 |
+
for (slice_tag, data) in audio_data:
|
198 |
+
print(f'#=====分段开始,耗时{round(len(data) / audio_sr, 3)}秒======')
|
199 |
+
# padd
|
200 |
+
pad_len = int(audio_sr * pad_seconds)
|
201 |
+
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
|
202 |
+
length = int(np.ceil(len(data) / audio_sr * self.target_sample))
|
203 |
+
raw_path = io.BytesIO()
|
204 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
205 |
+
raw_path.seek(0)
|
206 |
+
if slice_tag:
|
207 |
+
print('跳过空段')
|
208 |
+
_audio = np.zeros(length)
|
209 |
+
else:
|
210 |
+
out_audio, out_sr = self.infer(spk, tran, raw_path,
|
211 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
212 |
+
auto_predict_f0=auto_predict_f0,
|
213 |
+
noice_scale=noice_scale
|
214 |
+
)
|
215 |
+
_audio = out_audio.cpu().numpy()
|
216 |
+
|
217 |
+
pad_len = int(self.target_sample * pad_seconds)
|
218 |
+
_audio = _audio[pad_len:-pad_len]
|
219 |
+
audio.extend(list(_audio))
|
220 |
+
if empty_cache == True:
|
221 |
+
paddle.device.cuda.empty_cache()
|
222 |
+
return np.array(audio)
|
223 |
+
|
224 |
+
|
225 |
+
class RealTimeVC:
|
226 |
+
def __init__(self):
|
227 |
+
self.last_chunk = None
|
228 |
+
self.last_o = None
|
229 |
+
self.chunk_len = 16000 # 区块长度
|
230 |
+
self.pre_len = 3840 # 交叉淡化长度,640的倍数
|
231 |
+
|
232 |
+
"""输入输出都是1维numpy 音频波形数组"""
|
233 |
+
|
234 |
+
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
|
235 |
+
import maad
|
236 |
+
audio, sr = paddleaudio.load(input_wav_path)
|
237 |
+
audio = audio.cpu().numpy()[0]
|
238 |
+
temp_wav = io.BytesIO()
|
239 |
+
if self.last_chunk is None:
|
240 |
+
input_wav_path.seek(0)
|
241 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
|
242 |
+
audio = audio.cpu().numpy()
|
243 |
+
self.last_chunk = audio[-self.pre_len:]
|
244 |
+
self.last_o = audio
|
245 |
+
return audio[-self.chunk_len:]
|
246 |
+
else:
|
247 |
+
audio = np.concatenate([self.last_chunk, audio])
|
248 |
+
soundfile.write(temp_wav, audio, sr, format="wav")
|
249 |
+
temp_wav.seek(0)
|
250 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
|
251 |
+
audio = audio.cpu().numpy()
|
252 |
+
ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
|
253 |
+
self.last_chunk = audio[-self.pre_len:]
|
254 |
+
self.last_o = audio
|
255 |
+
return ret[self.chunk_len:2 * self.chunk_len]
|
inference/infer_tool_grad.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from pathlib import Path
|
7 |
+
import io
|
8 |
+
import librosa
|
9 |
+
import maad
|
10 |
+
import numpy as np
|
11 |
+
from inference import slicer
|
12 |
+
import parselmouth
|
13 |
+
import soundfile
|
14 |
+
import paddle
|
15 |
+
import paddle.audio as paddleaudio
|
16 |
+
|
17 |
+
from hubert import hubert_model
|
18 |
+
import utils
|
19 |
+
from models import SynthesizerTrn
|
20 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
21 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
22 |
+
|
23 |
+
def resize2d_f0(x, target_len):
|
24 |
+
source = np.array(x)
|
25 |
+
source[source < 0.001] = np.nan
|
26 |
+
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
|
27 |
+
source)
|
28 |
+
res = np.nan_to_num(target)
|
29 |
+
return res
|
30 |
+
|
31 |
+
def get_f0(x, p_len,f0_up_key=0):
|
32 |
+
|
33 |
+
time_step = 160 / 16000 * 1000
|
34 |
+
f0_min = 50
|
35 |
+
f0_max = 1100
|
36 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
37 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
38 |
+
|
39 |
+
f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
|
40 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
41 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
42 |
+
|
43 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
44 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
45 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
46 |
+
|
47 |
+
f0 *= pow(2, f0_up_key / 12)
|
48 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
49 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
50 |
+
f0_mel[f0_mel <= 1] = 1
|
51 |
+
f0_mel[f0_mel > 255] = 255
|
52 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
53 |
+
return f0_coarse, f0
|
54 |
+
|
55 |
+
def clean_pitch(input_pitch):
|
56 |
+
num_nan = np.sum(input_pitch == 1)
|
57 |
+
if num_nan / len(input_pitch) > 0.9:
|
58 |
+
input_pitch[input_pitch != 1] = 1
|
59 |
+
return input_pitch
|
60 |
+
|
61 |
+
|
62 |
+
def plt_pitch(input_pitch):
|
63 |
+
input_pitch = input_pitch.astype(float)
|
64 |
+
input_pitch[input_pitch == 1] = np.nan
|
65 |
+
return input_pitch
|
66 |
+
|
67 |
+
|
68 |
+
def f0_to_pitch(ff):
|
69 |
+
f0_pitch = 69 + 12 * np.log2(ff / 440)
|
70 |
+
return f0_pitch
|
71 |
+
|
72 |
+
|
73 |
+
def fill_a_to_b(a, b):
|
74 |
+
if len(a) < len(b):
|
75 |
+
for _ in range(0, len(b) - len(a)):
|
76 |
+
a.append(a[0])
|
77 |
+
|
78 |
+
|
79 |
+
def mkdir(paths: list):
|
80 |
+
for path in paths:
|
81 |
+
if not os.path.exists(path):
|
82 |
+
os.mkdir(path)
|
83 |
+
|
84 |
+
|
85 |
+
class VitsSvc(object):
|
86 |
+
def __init__(self):
|
87 |
+
self.device = "gpu:0" if paddle.device.is_compiled_with_cuda() else "cpu"
|
88 |
+
self.SVCVITS = None
|
89 |
+
self.hps = None
|
90 |
+
self.speakers = None
|
91 |
+
self.hubert_soft = utils.get_hubert_model()
|
92 |
+
|
93 |
+
def set_device(self, device):
|
94 |
+
self.device = device
|
95 |
+
#self.hubert_soft.to(self.device)
|
96 |
+
if self.SVCVITS != None:
|
97 |
+
self.SVCVITS.to(self.device)
|
98 |
+
|
99 |
+
def loadCheckpoint(self, path):
|
100 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
101 |
+
self.SVCVITS = SynthesizerTrn(
|
102 |
+
self.hps.data.filter_length // 2 + 1,
|
103 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
104 |
+
**self.hps.model)
|
105 |
+
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pdparams", self.SVCVITS, None)
|
106 |
+
_ = self.SVCVITS.eval().to(self.device)
|
107 |
+
self.speakers = self.hps.spk
|
108 |
+
|
109 |
+
def get_units(self, source, sr):
|
110 |
+
source = source.unsqueeze(0).cuda() if self.device == 'gpu:0' else source.unsqueeze(0).cpu()
|
111 |
+
# hubert没有迁移到paddle上。这里也就不迁移了。
|
112 |
+
with torch.inference_mode():
|
113 |
+
units = self.hubert_soft.units(source)
|
114 |
+
return units
|
115 |
+
|
116 |
+
|
117 |
+
def get_unit_pitch(self, in_path, tran):
|
118 |
+
source, sr = torchaudio.load(in_path)
|
119 |
+
source = torchaudio.functional.resample(source, sr, 16000)
|
120 |
+
if len(source.shape) == 2 and source.shape[1] >= 2:
|
121 |
+
source = torch.mean(source, dim=0).unsqueeze(0)
|
122 |
+
soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
|
123 |
+
f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
|
124 |
+
return soft, f0
|
125 |
+
|
126 |
+
def infer(self, speaker_id, tran, raw_path):
|
127 |
+
speaker_id = self.speakers[speaker_id]
|
128 |
+
sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
|
129 |
+
soft, pitch = self.get_unit_pitch(raw_path, tran)
|
130 |
+
f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
|
131 |
+
stn_tst = torch.FloatTensor(soft)
|
132 |
+
with torch.no_grad():
|
133 |
+
x_tst = stn_tst.unsqueeze(0).to(self.device)
|
134 |
+
x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
|
135 |
+
audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
|
136 |
+
return audio, audio.shape[-1]
|
137 |
+
|
138 |
+
def inference(self,srcaudio,chara,tran,slice_db):
|
139 |
+
sampling_rate, audio = srcaudio
|
140 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
141 |
+
if len(audio.shape) > 1:
|
142 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
143 |
+
if sampling_rate != 16000:
|
144 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
145 |
+
soundfile.write("tmpwav.wav", audio, 16000, format="wav")
|
146 |
+
chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
|
147 |
+
audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
|
148 |
+
audio = []
|
149 |
+
for (slice_tag, data) in audio_data:
|
150 |
+
length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
|
151 |
+
raw_path = io.BytesIO()
|
152 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
153 |
+
raw_path.seek(0)
|
154 |
+
if slice_tag:
|
155 |
+
_audio = np.zeros(length)
|
156 |
+
else:
|
157 |
+
out_audio, out_sr = self.infer(chara, tran, raw_path)
|
158 |
+
_audio = out_audio.cpu().numpy()
|
159 |
+
audio.extend(list(_audio))
|
160 |
+
audio = (np.array(audio) * 32768.0).astype('int16')
|
161 |
+
return (self.hps.data.sampling_rate,audio)
|
inference/slicer.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import paddle
|
3 |
+
import paddle.audio as paddleaudio
|
4 |
+
|
5 |
+
|
6 |
+
class Slicer:
|
7 |
+
def __init__(self,
|
8 |
+
sr: int,
|
9 |
+
threshold: float = -40.,
|
10 |
+
min_length: int = 5000,
|
11 |
+
min_interval: int = 300,
|
12 |
+
hop_size: int = 20,
|
13 |
+
max_sil_kept: int = 5000):
|
14 |
+
if not min_length >= min_interval >= hop_size:
|
15 |
+
raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
|
16 |
+
if not max_sil_kept >= hop_size:
|
17 |
+
raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
|
18 |
+
min_interval = sr * min_interval / 1000
|
19 |
+
self.threshold = 10 ** (threshold / 20.)
|
20 |
+
self.hop_size = round(sr * hop_size / 1000)
|
21 |
+
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
22 |
+
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
23 |
+
self.min_interval = round(min_interval / self.hop_size)
|
24 |
+
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
25 |
+
|
26 |
+
def _apply_slice(self, waveform, begin, end):
|
27 |
+
if len(waveform.shape) > 1:
|
28 |
+
return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
|
29 |
+
else:
|
30 |
+
return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
|
31 |
+
|
32 |
+
# @timeit
|
33 |
+
def slice(self, waveform):
|
34 |
+
if len(waveform.shape) > 1:
|
35 |
+
samples = librosa.to_mono(waveform)
|
36 |
+
else:
|
37 |
+
samples = waveform
|
38 |
+
if samples.shape[0] <= self.min_length:
|
39 |
+
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
|
40 |
+
rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
41 |
+
sil_tags = []
|
42 |
+
silence_start = None
|
43 |
+
clip_start = 0
|
44 |
+
for i, rms in enumerate(rms_list):
|
45 |
+
# Keep looping while frame is silent.
|
46 |
+
if rms < self.threshold:
|
47 |
+
# Record start of silent frames.
|
48 |
+
if silence_start is None:
|
49 |
+
silence_start = i
|
50 |
+
continue
|
51 |
+
# Keep looping while frame is not silent and silence start has not been recorded.
|
52 |
+
if silence_start is None:
|
53 |
+
continue
|
54 |
+
# Clear recorded silence start if interval is not enough or clip is too short
|
55 |
+
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
56 |
+
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
|
57 |
+
if not is_leading_silence and not need_slice_middle:
|
58 |
+
silence_start = None
|
59 |
+
continue
|
60 |
+
# Need slicing. Record the range of silent frames to be removed.
|
61 |
+
if i - silence_start <= self.max_sil_kept:
|
62 |
+
pos = rms_list[silence_start: i + 1].argmin() + silence_start
|
63 |
+
if silence_start == 0:
|
64 |
+
sil_tags.append((0, pos))
|
65 |
+
else:
|
66 |
+
sil_tags.append((pos, pos))
|
67 |
+
clip_start = pos
|
68 |
+
elif i - silence_start <= self.max_sil_kept * 2:
|
69 |
+
pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
|
70 |
+
pos += i - self.max_sil_kept
|
71 |
+
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
72 |
+
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
73 |
+
if silence_start == 0:
|
74 |
+
sil_tags.append((0, pos_r))
|
75 |
+
clip_start = pos_r
|
76 |
+
else:
|
77 |
+
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
78 |
+
clip_start = max(pos_r, pos)
|
79 |
+
else:
|
80 |
+
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
81 |
+
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
82 |
+
if silence_start == 0:
|
83 |
+
sil_tags.append((0, pos_r))
|
84 |
+
else:
|
85 |
+
sil_tags.append((pos_l, pos_r))
|
86 |
+
clip_start = pos_r
|
87 |
+
silence_start = None
|
88 |
+
# Deal with trailing silence.
|
89 |
+
total_frames = rms_list.shape[0]
|
90 |
+
if silence_start is not None and total_frames - silence_start >= self.min_interval:
|
91 |
+
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
92 |
+
pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
|
93 |
+
sil_tags.append((pos, total_frames + 1))
|
94 |
+
# Apply and return slices.
|
95 |
+
if len(sil_tags) == 0:
|
96 |
+
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
|
97 |
+
else:
|
98 |
+
chunks = []
|
99 |
+
# 第一段静音并非从头开始,补上有声片段
|
100 |
+
if sil_tags[0][0]:
|
101 |
+
chunks.append(
|
102 |
+
{"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
|
103 |
+
for i in range(0, len(sil_tags)):
|
104 |
+
# 标识有声片段(跳过第一段)
|
105 |
+
if i:
|
106 |
+
chunks.append({"slice": False,
|
107 |
+
"split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
|
108 |
+
# 标识所有静音片段
|
109 |
+
chunks.append({"slice": True,
|
110 |
+
"split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
|
111 |
+
# 最后一段静音并非结尾,补上结尾片段
|
112 |
+
if sil_tags[-1][1] * self.hop_size < len(waveform):
|
113 |
+
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
|
114 |
+
chunk_dict = {}
|
115 |
+
for i in range(len(chunks)):
|
116 |
+
chunk_dict[str(i)] = chunks[i]
|
117 |
+
return chunk_dict
|
118 |
+
|
119 |
+
|
120 |
+
def cut(audio_path, db_thresh=-30, min_len=5000):
|
121 |
+
audio, sr = librosa.load(audio_path, sr=None)
|
122 |
+
slicer = Slicer(
|
123 |
+
sr=sr,
|
124 |
+
threshold=db_thresh,
|
125 |
+
min_length=min_len
|
126 |
+
)
|
127 |
+
chunks = slicer.slice(audio)
|
128 |
+
return chunks
|
129 |
+
|
130 |
+
|
131 |
+
def chunks2audio(audio_path, chunks):
|
132 |
+
chunks = dict(chunks)
|
133 |
+
audio, sr = paddleaudio.load(audio_path)
|
134 |
+
if len(audio.shape) == 2 and audio.shape[1] >= 2:
|
135 |
+
audio = paddle.mean(audio, axis=0).unsqueeze(0)
|
136 |
+
audio = audio.cpu().numpy()[0]
|
137 |
+
result = []
|
138 |
+
for k, v in chunks.items():
|
139 |
+
tag = v["split_time"].split(",")
|
140 |
+
if tag[0] != tag[1]:
|
141 |
+
result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
|
142 |
+
return result, sr
|
inference_main.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
import time
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import librosa
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import soundfile
|
10 |
+
|
11 |
+
from inference import infer_tool
|
12 |
+
from inference import slicer
|
13 |
+
from inference.infer_tool import Svc
|
14 |
+
|
15 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
16 |
+
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
|
17 |
+
|
18 |
+
# 这里是推理用到的所有参数,从这里修改参数即可
|
19 |
+
模型路径:str = "./logs/44k/G_10000.pdparams" # 模型路径
|
20 |
+
推理文件列表:list = ["1.wav"] # wav文件名列表,放在raw文件夹下
|
21 |
+
音高调整:list = [0] # 音高调整,支持正负(半音)
|
22 |
+
合成目标说话人名称:list = ['yuuka'] # 合成目标说话人名称
|
23 |
+
自动预测音高:bool = False # 语音转换自动预测音高,转换歌声时不要打开这个会严重跑调
|
24 |
+
聚类模型路径:str = "logs/44k/kmeans_10000.pdparams" # 聚类模型路径,如果没有训练聚类则随便填
|
25 |
+
聚类方案占比:float = 0 # 聚类方案占比,范围0-1,若没有训练聚类模型则填0即可
|
26 |
+
静音分贝:int = -40 # 静音分贝阈值,默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50
|
27 |
+
推理设备:str or None = None # 推理设备,None则为自动选择cpu和gpu
|
28 |
+
音频输出格式:str = 'flac' # 音频输出格式
|
29 |
+
噪音比例:float = 0.4 # 声音有点电的话可以尝试调高这个,但是会降低音质,较为玄学
|
30 |
+
|
31 |
+
def main():
|
32 |
+
import argparse
|
33 |
+
|
34 |
+
parser = argparse.ArgumentParser(description='飞桨sovits4 推理模块')
|
35 |
+
parser.add_argument('-m', '--model_path', type=str, default=模型路径, help='模型路径')
|
36 |
+
parser.add_argument('-c', '--config_path', type=str, default="./logs/44k/config.json", help='配置文件路径')
|
37 |
+
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=推理文件列表, help='wav文件名列表,放在raw文件夹下')
|
38 |
+
parser.add_argument('-t', '--trans', type=int, nargs='+', default=音高调整, help='音高调整,支持正负(半音)')
|
39 |
+
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=合成目标说话人名称, help='合成目标说话人名称')
|
40 |
+
|
41 |
+
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=自动预测音高,
|
42 |
+
help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
|
43 |
+
parser.add_argument('-cm', '--cluster_model_path', type=str, default=聚类模型路径, help='聚类模型路径,如果没有训练聚类则随便填')
|
44 |
+
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=聚类方案占比, help='聚类方案占比,范围0-1,若没有训练聚类模型则填0即可')
|
45 |
+
|
46 |
+
parser.add_argument('-sd', '--slice_db', type=int, default=静音分贝, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
|
47 |
+
parser.add_argument('-d', '--device', type=str, default=推理设备, help='推理设备,None则为自动选择cpu和gpu')
|
48 |
+
parser.add_argument('-ns', '--noice_scale', type=float, default=噪音比例, help='噪音级别,会影响咬字和音质,较为玄学')
|
49 |
+
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
|
50 |
+
parser.add_argument('-wf', '--wav_format', type=str, default=音频输出格式, help='音频输出格式')
|
51 |
+
|
52 |
+
args = parser.parse_args()
|
53 |
+
|
54 |
+
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
|
55 |
+
infer_tool.mkdir(["raw", "results"])
|
56 |
+
clean_names = args.clean_names
|
57 |
+
trans = args.trans
|
58 |
+
spk_list = args.spk_list
|
59 |
+
slice_db = args.slice_db
|
60 |
+
wav_format = args.wav_format
|
61 |
+
auto_predict_f0 = args.auto_predict_f0
|
62 |
+
cluster_infer_ratio = args.cluster_infer_ratio
|
63 |
+
noice_scale = args.noice_scale
|
64 |
+
pad_seconds = args.pad_seconds
|
65 |
+
|
66 |
+
infer_tool.fill_a_to_b(trans, clean_names)
|
67 |
+
for clean_name, tran in zip(clean_names, trans):
|
68 |
+
raw_audio_path = f"raw/{clean_name}"
|
69 |
+
if "." not in raw_audio_path:
|
70 |
+
raw_audio_path += ".wav"
|
71 |
+
infer_tool.format_wav(raw_audio_path)
|
72 |
+
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
73 |
+
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
74 |
+
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
75 |
+
|
76 |
+
for spk in spk_list:
|
77 |
+
audio = []
|
78 |
+
for (slice_tag, data) in audio_data:
|
79 |
+
print(f'#=====分段开始,{round(len(data) / audio_sr, 3)}秒======')
|
80 |
+
|
81 |
+
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
|
82 |
+
if slice_tag:
|
83 |
+
print('跳过空段')
|
84 |
+
_audio = np.zeros(length)
|
85 |
+
else:
|
86 |
+
# padd
|
87 |
+
pad_len = int(audio_sr * pad_seconds)
|
88 |
+
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
|
89 |
+
raw_path = io.BytesIO()
|
90 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
91 |
+
raw_path.seek(0)
|
92 |
+
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
|
93 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
94 |
+
auto_predict_f0=auto_predict_f0,
|
95 |
+
noice_scale=noice_scale
|
96 |
+
)
|
97 |
+
_audio = out_audio.detach().cpu().numpy()
|
98 |
+
pad_len = int(svc_model.target_sample * pad_seconds)
|
99 |
+
_audio = _audio[pad_len:-pad_len]
|
100 |
+
|
101 |
+
audio.extend(list(infer_tool.pad_array(_audio, length)))
|
102 |
+
key = "auto" if auto_predict_f0 else f"{tran}key"
|
103 |
+
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
|
104 |
+
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
|
105 |
+
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
|
106 |
+
|
107 |
+
if __name__ == '__main__':
|
108 |
+
main()
|
logs/44k/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 800,
|
4 |
+
"eval_interval": 400,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 114514,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-05,
|
13 |
+
"batch_size": 2,
|
14 |
+
"fp16_run": true,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 10240,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"use_sr": true,
|
22 |
+
"max_speclen": 512,
|
23 |
+
"port": "8001",
|
24 |
+
"keep_ckpts": 5
|
25 |
+
},
|
26 |
+
"data": {
|
27 |
+
"training_files": "filelists/train.txt",
|
28 |
+
"validation_files": "filelists/val.txt",
|
29 |
+
"max_wav_value": 32768.0,
|
30 |
+
"sampling_rate": 44100,
|
31 |
+
"filter_length": 2048,
|
32 |
+
"hop_length": 512,
|
33 |
+
"win_length": 2048,
|
34 |
+
"n_mel_channels": 80,
|
35 |
+
"mel_fmin": 0.0,
|
36 |
+
"mel_fmax": 22050
|
37 |
+
},
|
38 |
+
"model": {
|
39 |
+
"inter_channels": 192,
|
40 |
+
"hidden_channels": 192,
|
41 |
+
"filter_channels": 768,
|
42 |
+
"n_heads": 2,
|
43 |
+
"n_layers": 6,
|
44 |
+
"kernel_size": 3,
|
45 |
+
"p_dropout": 0.1,
|
46 |
+
"resblock": "1",
|
47 |
+
"resblock_kernel_sizes": [
|
48 |
+
3,
|
49 |
+
7,
|
50 |
+
11
|
51 |
+
],
|
52 |
+
"resblock_dilation_sizes": [
|
53 |
+
[
|
54 |
+
1,
|
55 |
+
3,
|
56 |
+
5
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1,
|
60 |
+
3,
|
61 |
+
5
|
62 |
+
],
|
63 |
+
[
|
64 |
+
1,
|
65 |
+
3,
|
66 |
+
5
|
67 |
+
]
|
68 |
+
],
|
69 |
+
"upsample_rates": [
|
70 |
+
8,
|
71 |
+
8,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"upsample_initial_channel": 512,
|
77 |
+
"upsample_kernel_sizes": [
|
78 |
+
16,
|
79 |
+
16,
|
80 |
+
4,
|
81 |
+
4,
|
82 |
+
4
|
83 |
+
],
|
84 |
+
"n_layers_q": 3,
|
85 |
+
"use_spectral_norm": false,
|
86 |
+
"gin_channels": 256,
|
87 |
+
"ssl_dim": 256,
|
88 |
+
"n_speakers": 200
|
89 |
+
},
|
90 |
+
"spk": {
|
91 |
+
"yuuka": 0
|
92 |
+
},
|
93 |
+
"clean_logs": true,
|
94 |
+
"trainer": "admin"
|
95 |
+
}
|
logs/44k/eval/vdlrecords.1690034156.log
ADDED
Binary file (948 kB). View file
|
|
logs/44k/train.log
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-07-22 21:55:56,616 44k INFO {'train': {'log_interval': 800, 'eval_interval': 400, 'seed': 1234, 'epochs': 114514, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-05, 'batch_size': 2, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 5}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 200}, 'spk': {'yuuka': 0}, 'clean_logs': True, 'trainer': 'admin', 'model_dir': './logs/44k'}
|
2 |
+
2023-07-22 21:55:56,617 44k WARNING /home/aistudio/build不是git存储库,因此将忽略哈希值比较。
|
3 |
+
2023-07-22 21:55:59,336 44k INFO 加载检查点 './logs/44k/G_0.pdparams' (迭代次数 1)
|
4 |
+
2023-07-22 21:55:59,680 44k INFO 加载检查点 './logs/44k/D_0.pdparams' (迭代次数 1)
|
5 |
+
2023-07-22 21:56:12,355 44k INFO 训练回合:1 [0%]
|
6 |
+
2023-07-22 21:56:12,356 44k INFO 损失:[2.723755359649658, 2.7280983924865723, 7.272645950317383, 30.232248306274414, 3.609935998916626],步数:0,学习率:0.0001
|
7 |
+
2023-07-22 21:56:20,694 44k INFO 保存模型和优化器状态位于迭代次数1 到 ./logs/44k/G_0.pdparams
|
8 |
+
2023-07-22 21:56:22,248 44k INFO 保存模型和优化器状态位于迭代次数1 到 ./logs/44k/D_0.pdparams
|
logs/44k/vdlrecords.1690034156.log
ADDED
Binary file (325 kB). View file
|
|
models.py
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import paddle
|
4 |
+
from paddle import nn
|
5 |
+
from paddle.nn import functional as F
|
6 |
+
|
7 |
+
import modules.attentions as attentions
|
8 |
+
import modules.commons as commons
|
9 |
+
import modules.modules as modules
|
10 |
+
|
11 |
+
from paddle.nn import Conv1D, Conv1DTranspose, AvgPool1D, Conv2D
|
12 |
+
from paddle.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
|
14 |
+
import utils
|
15 |
+
from modules.commons import init_weights, get_padding
|
16 |
+
from vdecoder.hifigan.models import Generator
|
17 |
+
from utils import f0_to_coarse
|
18 |
+
import random
|
19 |
+
import string
|
20 |
+
import time
|
21 |
+
|
22 |
+
class ResidualCouplingBlock(nn.Layer):
|
23 |
+
def __init__(self,
|
24 |
+
channels,
|
25 |
+
hidden_channels,
|
26 |
+
kernel_size,
|
27 |
+
dilation_rate,
|
28 |
+
n_layers,
|
29 |
+
n_flows=4,
|
30 |
+
gin_channels=0):
|
31 |
+
super().__init__()
|
32 |
+
self.channels = channels
|
33 |
+
self.hidden_channels = hidden_channels
|
34 |
+
self.kernel_size = kernel_size
|
35 |
+
self.dilation_rate = dilation_rate
|
36 |
+
self.n_layers = n_layers
|
37 |
+
self.n_flows = n_flows
|
38 |
+
self.gin_channels = gin_channels
|
39 |
+
|
40 |
+
self.flows = nn.LayerList()
|
41 |
+
for i in range(n_flows):
|
42 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
43 |
+
self.flows.append(modules.Flip())
|
44 |
+
|
45 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
46 |
+
if not reverse:
|
47 |
+
for flow in self.flows:
|
48 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
49 |
+
else:
|
50 |
+
for flow in reversed(self.flows):
|
51 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class Encoder(nn.Layer):
|
56 |
+
def __init__(self,
|
57 |
+
in_channels,
|
58 |
+
out_channels,
|
59 |
+
hidden_channels,
|
60 |
+
kernel_size,
|
61 |
+
dilation_rate,
|
62 |
+
n_layers,
|
63 |
+
gin_channels=0):
|
64 |
+
super().__init__()
|
65 |
+
self.in_channels = in_channels
|
66 |
+
self.out_channels = out_channels
|
67 |
+
self.hidden_channels = hidden_channels
|
68 |
+
self.kernel_size = kernel_size
|
69 |
+
self.dilation_rate = dilation_rate
|
70 |
+
self.n_layers = n_layers
|
71 |
+
self.gin_channels = gin_channels
|
72 |
+
|
73 |
+
self.pre = nn.Conv1D(in_channels, hidden_channels, 1)
|
74 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
75 |
+
self.proj = nn.Conv1D(hidden_channels, out_channels * 2, 1)
|
76 |
+
|
77 |
+
def forward(self, x, x_lengths, g=None):
|
78 |
+
# print(x.shape,x_lengths.shape)
|
79 |
+
x_mask = paddle.unsqueeze(commons.sequence_mask(x_lengths, x.shape[2]), 1).cast(x.dtype)
|
80 |
+
x = self.pre(x) * x_mask
|
81 |
+
x = self.enc(x, x_mask, g=g)
|
82 |
+
stats = self.proj(x) * x_mask
|
83 |
+
m, logs = paddle.split(stats, [self.out_channels,self.out_channels], axis=1)
|
84 |
+
z = (m + paddle.randn(m.shape,m.dtype) * paddle.exp(logs)) * x_mask
|
85 |
+
return z, m, logs, x_mask
|
86 |
+
|
87 |
+
|
88 |
+
class TextEncoder(nn.Layer):
|
89 |
+
def __init__(self,
|
90 |
+
out_channels,
|
91 |
+
hidden_channels,
|
92 |
+
kernel_size,
|
93 |
+
n_layers,
|
94 |
+
gin_channels=0,
|
95 |
+
filter_channels=None,
|
96 |
+
n_heads=None,
|
97 |
+
p_dropout=None):
|
98 |
+
super().__init__()
|
99 |
+
self.out_channels = out_channels
|
100 |
+
self.hidden_channels = hidden_channels
|
101 |
+
self.kernel_size = kernel_size
|
102 |
+
self.n_layers = n_layers
|
103 |
+
self.gin_channels = gin_channels
|
104 |
+
self.proj = nn.Conv1D(hidden_channels, out_channels * 2, 1)
|
105 |
+
self.f0_emb = nn.Embedding(256, hidden_channels)
|
106 |
+
|
107 |
+
self.enc_ = attentions.Encoder(
|
108 |
+
hidden_channels,
|
109 |
+
filter_channels,
|
110 |
+
n_heads,
|
111 |
+
n_layers,
|
112 |
+
kernel_size,
|
113 |
+
p_dropout)
|
114 |
+
|
115 |
+
def forward(self, x, x_mask, f0=None, noice_scale=1):
|
116 |
+
x = x + self.f0_emb(f0).transpose((0,2,1))
|
117 |
+
x = self.enc_(x * x_mask, x_mask)
|
118 |
+
stats = self.proj(x) * x_mask
|
119 |
+
m, logs = paddle.split(stats, [self.out_channels,self.out_channels], axis = 1)
|
120 |
+
z = (m + paddle.randn(m.shape,m.dtype) * paddle.exp(logs) * noice_scale) * x_mask
|
121 |
+
return z, m, logs, x_mask
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
class DiscriminatorP(paddle.nn.Layer):
|
126 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
127 |
+
super(DiscriminatorP, self).__init__()
|
128 |
+
self.period = period
|
129 |
+
self.use_spectral_norm = use_spectral_norm
|
130 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
131 |
+
self.convs = nn.LayerList([
|
132 |
+
norm_f(Conv2D(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
133 |
+
norm_f(Conv2D(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
134 |
+
norm_f(Conv2D(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
135 |
+
norm_f(Conv2D(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
136 |
+
norm_f(Conv2D(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
137 |
+
])
|
138 |
+
self.conv_post = norm_f(Conv2D(1024, 1, (3, 1), 1, padding=(1, 0)))
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
fmap = []
|
142 |
+
|
143 |
+
# 1d to 2d
|
144 |
+
b, c, t = x.shape
|
145 |
+
if t % self.period != 0: # pad first
|
146 |
+
n_pad = self.period - (t % self.period)
|
147 |
+
x = F.pad(x, (0, n_pad), "reflect",data_format='NCL')
|
148 |
+
t = t + n_pad
|
149 |
+
x = x.reshape((b, c, t // self.period, self.period))
|
150 |
+
|
151 |
+
for l in self.convs:
|
152 |
+
x = l(x)
|
153 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
154 |
+
fmap.append(x)
|
155 |
+
x = self.conv_post(x)
|
156 |
+
fmap.append(x)
|
157 |
+
x = paddle.flatten(x, 1, -1)
|
158 |
+
|
159 |
+
return x, fmap
|
160 |
+
|
161 |
+
|
162 |
+
class DiscriminatorS(paddle.nn.Layer):
|
163 |
+
def __init__(self, use_spectral_norm=False):
|
164 |
+
super(DiscriminatorS, self).__init__()
|
165 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
166 |
+
self.convs = nn.LayerList([
|
167 |
+
norm_f(Conv1D(1, 16, 15, 1, padding=7)),
|
168 |
+
norm_f(Conv1D(16, 64, 41, 4, groups=4, padding=20)),
|
169 |
+
norm_f(Conv1D(64, 256, 41, 4, groups=16, padding=20)),
|
170 |
+
norm_f(Conv1D(256, 1024, 41, 4, groups=64, padding=20)),
|
171 |
+
norm_f(Conv1D(1024, 1024, 41, 4, groups=256, padding=20)),
|
172 |
+
norm_f(Conv1D(1024, 1024, 5, 1, padding=2)),
|
173 |
+
])
|
174 |
+
self.conv_post = norm_f(Conv1D(1024, 1, 3, 1, padding=1))
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
fmap = []
|
178 |
+
|
179 |
+
for l in self.convs:
|
180 |
+
x = l(x)
|
181 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
182 |
+
fmap.append(x)
|
183 |
+
x = self.conv_post(x)
|
184 |
+
fmap.append(x)
|
185 |
+
x = paddle.flatten(x, 1, -1)
|
186 |
+
|
187 |
+
return x, fmap
|
188 |
+
|
189 |
+
|
190 |
+
class MultiPeriodDiscriminator(paddle.nn.Layer):
|
191 |
+
def __init__(self, use_spectral_norm=False):
|
192 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
193 |
+
periods = [2,3,5,7,11]
|
194 |
+
|
195 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
196 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
197 |
+
self.discriminators = nn.LayerList(discs)
|
198 |
+
|
199 |
+
def forward(self, y, y_hat):
|
200 |
+
y_d_rs = []
|
201 |
+
y_d_gs = []
|
202 |
+
fmap_rs = []
|
203 |
+
fmap_gs = []
|
204 |
+
for i, d in enumerate(self.discriminators):
|
205 |
+
y_d_r, fmap_r = d(y)
|
206 |
+
y_d_g, fmap_g = d(y_hat)
|
207 |
+
y_d_rs.append(y_d_r)
|
208 |
+
y_d_gs.append(y_d_g)
|
209 |
+
fmap_rs.append(fmap_r)
|
210 |
+
fmap_gs.append(fmap_g)
|
211 |
+
|
212 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
213 |
+
|
214 |
+
|
215 |
+
class SpeakerEncoder(paddle.nn.Layer):
|
216 |
+
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
217 |
+
super(SpeakerEncoder, self).__init__()
|
218 |
+
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers)
|
219 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
220 |
+
self.relu = nn.ReLU()
|
221 |
+
|
222 |
+
def forward(self, mels):
|
223 |
+
self.lstm.flatten_parameters()
|
224 |
+
_, (hidden, _) = self.lstm(mels)
|
225 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
226 |
+
return embeds_raw / paddle.norm(embeds_raw, axis=1, keepdim=True)
|
227 |
+
|
228 |
+
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
229 |
+
mel_slices = []
|
230 |
+
for i in range(0, total_frames-partial_frames, partial_hop):
|
231 |
+
mel_range = paddle.arange(i, i+partial_frames)
|
232 |
+
mel_slices.append(mel_range)
|
233 |
+
|
234 |
+
return mel_slices
|
235 |
+
|
236 |
+
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
237 |
+
mel_len = mel.shape[1]
|
238 |
+
last_mel = mel[:,-partial_frames:]
|
239 |
+
|
240 |
+
if mel_len > partial_frames:
|
241 |
+
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
242 |
+
mels = list(mel[:,s] for s in mel_slices)
|
243 |
+
mels.append(last_mel)
|
244 |
+
mels = paddle.stack(tuple(mels), 0).squeeze(1)
|
245 |
+
|
246 |
+
with paddle.no_grad():
|
247 |
+
partial_embeds = self(mels)
|
248 |
+
embed = paddle.mean(partial_embeds, axis=0).unsqueeze(0)
|
249 |
+
#embed = embed / torch.linalg.norm(embed, 2)
|
250 |
+
else:
|
251 |
+
with paddle.no_grad():
|
252 |
+
embed = self(last_mel)
|
253 |
+
|
254 |
+
return embed
|
255 |
+
|
256 |
+
class F0Decoder(nn.Layer):
|
257 |
+
def __init__(self,
|
258 |
+
out_channels,
|
259 |
+
hidden_channels,
|
260 |
+
filter_channels,
|
261 |
+
n_heads,
|
262 |
+
n_layers,
|
263 |
+
kernel_size,
|
264 |
+
p_dropout,
|
265 |
+
spk_channels=0):
|
266 |
+
super().__init__()
|
267 |
+
self.out_channels = out_channels
|
268 |
+
self.hidden_channels = hidden_channels
|
269 |
+
self.filter_channels = filter_channels
|
270 |
+
self.n_heads = n_heads
|
271 |
+
self.n_layers = n_layers
|
272 |
+
self.kernel_size = kernel_size
|
273 |
+
self.p_dropout = p_dropout
|
274 |
+
self.spk_channels = spk_channels
|
275 |
+
|
276 |
+
self.prenet = nn.Conv1D(hidden_channels, hidden_channels, 3, padding=1)
|
277 |
+
self.decoder = attentions.FFT(
|
278 |
+
hidden_channels,
|
279 |
+
filter_channels,
|
280 |
+
n_heads,
|
281 |
+
n_layers,
|
282 |
+
kernel_size,
|
283 |
+
p_dropout)
|
284 |
+
self.proj = nn.Conv1D(hidden_channels, out_channels, 1)
|
285 |
+
self.f0_prenet = nn.Conv1D(1, hidden_channels , 3, padding=1)
|
286 |
+
self.cond = nn.Conv1D(spk_channels, hidden_channels, 1)
|
287 |
+
|
288 |
+
def forward(self, x, norm_f0, x_mask, spk_emb=None):
|
289 |
+
x = x.detach()
|
290 |
+
if (spk_emb is not None):
|
291 |
+
x = x + self.cond(spk_emb)
|
292 |
+
x += self.f0_prenet(norm_f0)
|
293 |
+
x = self.prenet(x) * x_mask
|
294 |
+
x = self.decoder(x * x_mask, x_mask)
|
295 |
+
x = self.proj(x) * x_mask
|
296 |
+
return x
|
297 |
+
|
298 |
+
class SynthesizerTrn_test(nn.Layer):
|
299 |
+
"""
|
300 |
+
Synthesizer for Training
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self,
|
304 |
+
spec_channels,
|
305 |
+
segment_size,
|
306 |
+
inter_channels,
|
307 |
+
hidden_channels,
|
308 |
+
filter_channels,
|
309 |
+
n_heads,
|
310 |
+
n_layers,
|
311 |
+
kernel_size,
|
312 |
+
p_dropout,
|
313 |
+
resblock,
|
314 |
+
resblock_kernel_sizes,
|
315 |
+
resblock_dilation_sizes,
|
316 |
+
upsample_rates,
|
317 |
+
upsample_initial_channel,
|
318 |
+
upsample_kernel_sizes,
|
319 |
+
gin_channels,
|
320 |
+
ssl_dim,
|
321 |
+
n_speakers,
|
322 |
+
sampling_rate=44100,
|
323 |
+
**kwargs):
|
324 |
+
|
325 |
+
super().__init__()
|
326 |
+
self.spec_channels = spec_channels
|
327 |
+
self.inter_channels = inter_channels
|
328 |
+
self.hidden_channels = hidden_channels
|
329 |
+
self.filter_channels = filter_channels
|
330 |
+
self.n_heads = n_heads
|
331 |
+
self.n_layers = n_layers
|
332 |
+
self.kernel_size = kernel_size
|
333 |
+
self.p_dropout = p_dropout
|
334 |
+
self.resblock = resblock
|
335 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
336 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
337 |
+
self.upsample_rates = upsample_rates
|
338 |
+
self.upsample_initial_channel = upsample_initial_channel
|
339 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
340 |
+
self.segment_size = segment_size
|
341 |
+
self.gin_channels = gin_channels
|
342 |
+
self.ssl_dim = ssl_dim
|
343 |
+
|
344 |
+
init = paddle.nn.initializer.Normal(0.001,1)
|
345 |
+
pa = paddle.ParamAttr(f'emb_g_pa_{int(time.time())}',init)
|
346 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels, weight_attr = pa)
|
347 |
+
|
348 |
+
init = paddle.nn.initializer.Normal(2.7973e-06,0.0161)
|
349 |
+
pre_pa = paddle.ParamAttr(f'pre_pa_{int(time.time())}',init)
|
350 |
+
self.pre = nn.Conv1D(ssl_dim, hidden_channels, kernel_size=5, padding=2, weight_attr = pre_pa)
|
351 |
+
|
352 |
+
self.enc_p = TextEncoder(
|
353 |
+
inter_channels,
|
354 |
+
hidden_channels,
|
355 |
+
filter_channels=filter_channels,
|
356 |
+
n_heads=n_heads,
|
357 |
+
n_layers=n_layers,
|
358 |
+
kernel_size=kernel_size,
|
359 |
+
p_dropout=p_dropout
|
360 |
+
)
|
361 |
+
hps = {
|
362 |
+
"sampling_rate": sampling_rate,
|
363 |
+
"inter_channels": inter_channels,
|
364 |
+
"resblock": resblock,
|
365 |
+
"resblock_kernel_sizes": resblock_kernel_sizes,
|
366 |
+
"resblock_dilation_sizes": resblock_dilation_sizes,
|
367 |
+
"upsample_rates": upsample_rates,
|
368 |
+
"upsample_initial_channel": upsample_initial_channel,
|
369 |
+
"upsample_kernel_sizes": upsample_kernel_sizes,
|
370 |
+
"gin_channels": gin_channels,
|
371 |
+
}
|
372 |
+
self.dec = Generator(h=hps)
|
373 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
374 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
375 |
+
self.f0_decoder = F0Decoder(
|
376 |
+
1,
|
377 |
+
hidden_channels,
|
378 |
+
filter_channels,
|
379 |
+
n_heads,
|
380 |
+
n_layers,
|
381 |
+
kernel_size,
|
382 |
+
p_dropout,
|
383 |
+
spk_channels=gin_channels
|
384 |
+
)
|
385 |
+
initer = paddle.nn.initializer.Normal(mean = 0.202, std = 0.9640, name = f'emb_uv_init_weight_{time.time}')
|
386 |
+
emb_uv_pa = paddle.ParamAttr(f'emb_uv_init_weight_pa_{int(time.time())}',initer)
|
387 |
+
self.emb_uv = nn.Embedding(2, hidden_channels, weight_attr = emb_uv_pa)
|
388 |
+
|
389 |
+
def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
|
390 |
+
g = self.emb_g(g).transpose([0,2,1])
|
391 |
+
# ssl prenet
|
392 |
+
x_mask = paddle.unsqueeze(commons.sequence_mask(c_lengths, c.shape[2]), 1).astype(c.dtype)
|
393 |
+
emb_uv = self.emb_uv(uv.cast('int64')).transpose([0,2,1])
|
394 |
+
prec = self.pre(c)
|
395 |
+
x = prec * x_mask + emb_uv
|
396 |
+
# f0 predict
|
397 |
+
lf0 = 2595. * paddle.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
398 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
|
399 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
400 |
+
|
401 |
+
# encoder
|
402 |
+
z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0 = f0_to_coarse(f0))
|
403 |
+
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
404 |
+
|
405 |
+
# flow
|
406 |
+
z_p = self.flow(z, spec_mask, g=g)
|
407 |
+
z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
|
408 |
+
# nsf decoder
|
409 |
+
o = self.dec(z_slice, g=g, f0=pitch_slice)
|
410 |
+
|
411 |
+
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
|
412 |
+
|
413 |
+
def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
|
414 |
+
c_lengths = ((paddle.ones((c.shape[0],)) * c.shape[-1])).cpu() if 'cpu'in str(c.place) else ((paddle.ones((c.shape[0],)) * c.shape[-1])).cuda()
|
415 |
+
g = self.emb_g(g).transpose([0,2,1])
|
416 |
+
x_mask = paddle.unsqueeze(commons.sequence_mask(c_lengths, c.shape[2]), 1).astype(c.dtype)
|
417 |
+
x = self.pre(c) * x_mask + self.emb_uv(uv.astype('int64')).transpose([0,2,1])
|
418 |
+
if predict_f0:
|
419 |
+
lf0 = 2595. * paddle.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
420 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
|
421 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
422 |
+
f0 = (700 * (paddle.pow(paddle.to_tensor(10.), pred_lf0 * 500 / 2595) - 1)).squeeze(1)
|
423 |
+
z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
|
424 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
425 |
+
o = self.dec(z * c_mask, g=g, f0=f0)
|
426 |
+
return o
|
427 |
+
|
428 |
+
class SynthesizerTrn(nn.Layer):
|
429 |
+
"""
|
430 |
+
Synthesizer for Training
|
431 |
+
"""
|
432 |
+
|
433 |
+
def __init__(self,
|
434 |
+
spec_channels,
|
435 |
+
segment_size,
|
436 |
+
inter_channels,
|
437 |
+
hidden_channels,
|
438 |
+
filter_channels,
|
439 |
+
n_heads,
|
440 |
+
n_layers,
|
441 |
+
kernel_size,
|
442 |
+
p_dropout,
|
443 |
+
resblock,
|
444 |
+
resblock_kernel_sizes,
|
445 |
+
resblock_dilation_sizes,
|
446 |
+
upsample_rates,
|
447 |
+
upsample_initial_channel,
|
448 |
+
upsample_kernel_sizes,
|
449 |
+
gin_channels,
|
450 |
+
ssl_dim,
|
451 |
+
n_speakers,
|
452 |
+
sampling_rate=44100,
|
453 |
+
**kwargs):
|
454 |
+
|
455 |
+
super().__init__()
|
456 |
+
self.spec_channels = spec_channels
|
457 |
+
self.inter_channels = inter_channels
|
458 |
+
self.hidden_channels = hidden_channels
|
459 |
+
self.filter_channels = filter_channels
|
460 |
+
self.n_heads = n_heads
|
461 |
+
self.n_layers = n_layers
|
462 |
+
self.kernel_size = kernel_size
|
463 |
+
self.p_dropout = p_dropout
|
464 |
+
self.resblock = resblock
|
465 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
466 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
467 |
+
self.upsample_rates = upsample_rates
|
468 |
+
self.upsample_initial_channel = upsample_initial_channel
|
469 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
470 |
+
self.segment_size = segment_size
|
471 |
+
self.gin_channels = gin_channels
|
472 |
+
self.ssl_dim = ssl_dim
|
473 |
+
|
474 |
+
init = paddle.nn.initializer.Normal(0.001,1)
|
475 |
+
pa = paddle.ParamAttr('emb_g_pa',init)
|
476 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels, weight_attr = pa)
|
477 |
+
|
478 |
+
init = paddle.nn.initializer.Normal(2.7973e-06,0.0161)
|
479 |
+
pre_pa = paddle.ParamAttr('pre_pa',init)
|
480 |
+
self.pre = nn.Conv1D(ssl_dim, hidden_channels, kernel_size=5, padding=2, weight_attr = pre_pa)
|
481 |
+
|
482 |
+
self.enc_p = TextEncoder(
|
483 |
+
inter_channels,
|
484 |
+
hidden_channels,
|
485 |
+
filter_channels=filter_channels,
|
486 |
+
n_heads=n_heads,
|
487 |
+
n_layers=n_layers,
|
488 |
+
kernel_size=kernel_size,
|
489 |
+
p_dropout=p_dropout
|
490 |
+
)
|
491 |
+
hps = {
|
492 |
+
"sampling_rate": sampling_rate,
|
493 |
+
"inter_channels": inter_channels,
|
494 |
+
"resblock": resblock,
|
495 |
+
"resblock_kernel_sizes": resblock_kernel_sizes,
|
496 |
+
"resblock_dilation_sizes": resblock_dilation_sizes,
|
497 |
+
"upsample_rates": upsample_rates,
|
498 |
+
"upsample_initial_channel": upsample_initial_channel,
|
499 |
+
"upsample_kernel_sizes": upsample_kernel_sizes,
|
500 |
+
"gin_channels": gin_channels,
|
501 |
+
}
|
502 |
+
self.dec = Generator(h=hps)
|
503 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
504 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
505 |
+
self.f0_decoder = F0Decoder(
|
506 |
+
1,
|
507 |
+
hidden_channels,
|
508 |
+
filter_channels,
|
509 |
+
n_heads,
|
510 |
+
n_layers,
|
511 |
+
kernel_size,
|
512 |
+
p_dropout,
|
513 |
+
spk_channels=gin_channels
|
514 |
+
)
|
515 |
+
initer = paddle.nn.initializer.Normal(mean = 0.202, std = 0.9640, name = f'emb_uv_init_weight')
|
516 |
+
emb_uv_pa = paddle.ParamAttr('emb_uv_init_weight_pa',initer)
|
517 |
+
self.emb_uv = nn.Embedding(2, hidden_channels, weight_attr = emb_uv_pa)
|
518 |
+
|
519 |
+
def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
|
520 |
+
g = self.emb_g(g).transpose([0,2,1])
|
521 |
+
# ssl prenet
|
522 |
+
x_mask = paddle.unsqueeze(commons.sequence_mask(c_lengths, c.shape[2]), 1).astype(c.dtype)
|
523 |
+
emb_uv = self.emb_uv(uv.cast('int64')).transpose([0,2,1])
|
524 |
+
prec = self.pre(c)
|
525 |
+
x = prec * x_mask + emb_uv
|
526 |
+
# f0 predict
|
527 |
+
lf0 = 2595. * paddle.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
528 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
|
529 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
530 |
+
|
531 |
+
# encoder
|
532 |
+
z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0 = f0_to_coarse(f0))
|
533 |
+
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
534 |
+
|
535 |
+
# flow
|
536 |
+
z_p = self.flow(z, spec_mask, g=g)
|
537 |
+
z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
|
538 |
+
# nsf decoder
|
539 |
+
o = self.dec(z_slice, g=g, f0=pitch_slice)
|
540 |
+
|
541 |
+
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
|
542 |
+
|
543 |
+
def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
|
544 |
+
c_lengths = ((paddle.ones((c.shape[0],)) * c.shape[-1])).cpu() if 'cpu'in str(c.place) else ((paddle.ones((c.shape[0],)) * c.shape[-1])).cuda()
|
545 |
+
g = self.emb_g(g).transpose([0,2,1])
|
546 |
+
x_mask = paddle.unsqueeze(commons.sequence_mask(c_lengths, c.shape[2]), 1).astype(c.dtype)
|
547 |
+
x = self.pre(c) * x_mask + self.emb_uv(uv.astype('int64')).transpose([0,2,1])
|
548 |
+
if predict_f0:
|
549 |
+
lf0 = 2595. * paddle.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
550 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
|
551 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
552 |
+
f0 = (700 * (paddle.pow(paddle.to_tensor(10.), pred_lf0 * 500 / 2595) - 1)).squeeze(1)
|
553 |
+
z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
|
554 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
555 |
+
o = self.dec(z * c_mask, g=g, f0=f0)
|
556 |
+
return o
|
modules/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
'''由梅花三弄再回首花了一个下午迁移的模块。'''
|
modules/attentions.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import paddle
|
5 |
+
from paddle import nn
|
6 |
+
from paddle.nn import functional as F
|
7 |
+
|
8 |
+
import modules.commons as commons
|
9 |
+
import modules.modules as modules
|
10 |
+
from modules.modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class FFT(nn.Layer):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
|
15 |
+
proximal_bias=False, proximal_init=True, **kwargs):
|
16 |
+
super().__init__()
|
17 |
+
self.hidden_channels = hidden_channels
|
18 |
+
self.filter_channels = filter_channels
|
19 |
+
self.n_heads = n_heads
|
20 |
+
self.n_layers = n_layers
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.proximal_bias = proximal_bias
|
24 |
+
self.proximal_init = proximal_init
|
25 |
+
|
26 |
+
self.drop = nn.Dropout(p_dropout)
|
27 |
+
self.self_attn_layers = nn.LayerList()
|
28 |
+
self.norm_layers_0 = nn.LayerList()
|
29 |
+
self.ffn_layers = nn.LayerList()
|
30 |
+
self.norm_layers_1 = nn.LayerList()
|
31 |
+
for i in range(self.n_layers):
|
32 |
+
self.self_attn_layers.append(
|
33 |
+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
|
34 |
+
proximal_init=proximal_init))
|
35 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
36 |
+
self.ffn_layers.append(
|
37 |
+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
38 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
39 |
+
|
40 |
+
def forward(self, x, x_mask):
|
41 |
+
"""
|
42 |
+
x: decoder input
|
43 |
+
h: encoder output
|
44 |
+
"""
|
45 |
+
self_attn_mask = commons.subsequent_mask(x_mask.shape[2]).astype(dtype=x.dtype)
|
46 |
+
x = x * x_mask
|
47 |
+
for i in range(self.n_layers):
|
48 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
49 |
+
y = self.drop(y)
|
50 |
+
x = self.norm_layers_0[i](x + y)
|
51 |
+
|
52 |
+
y = self.ffn_layers[i](x, x_mask)
|
53 |
+
y = self.drop(y)
|
54 |
+
x = self.norm_layers_1[i](x + y)
|
55 |
+
x = x * x_mask
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class Encoder(nn.Layer):
|
60 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
61 |
+
super().__init__()
|
62 |
+
self.hidden_channels = hidden_channels
|
63 |
+
self.filter_channels = filter_channels
|
64 |
+
self.n_heads = n_heads
|
65 |
+
self.n_layers = n_layers
|
66 |
+
self.kernel_size = kernel_size
|
67 |
+
self.p_dropout = p_dropout
|
68 |
+
self.window_size = window_size
|
69 |
+
|
70 |
+
self.drop = nn.Dropout(p_dropout)
|
71 |
+
self.attn_layers = nn.LayerList()
|
72 |
+
self.norm_layers_1 = nn.LayerList()
|
73 |
+
self.ffn_layers = nn.LayerList()
|
74 |
+
self.norm_layers_2 = nn.LayerList()
|
75 |
+
for i in range(self.n_layers):
|
76 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
77 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
78 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
79 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
80 |
+
|
81 |
+
def forward(self, x, x_mask):
|
82 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
83 |
+
x = x * x_mask
|
84 |
+
for i in range(self.n_layers):
|
85 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
86 |
+
y = self.drop(y)
|
87 |
+
x = self.norm_layers_1[i](x + y)
|
88 |
+
y = self.ffn_layers[i](x, x_mask)
|
89 |
+
y = self.drop(y)
|
90 |
+
x = self.norm_layers_2[i](x + y)
|
91 |
+
x = x * x_mask
|
92 |
+
return x
|
93 |
+
|
94 |
+
|
95 |
+
class Decoder(nn.Layer):
|
96 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
97 |
+
super().__init__()
|
98 |
+
self.hidden_channels = hidden_channels
|
99 |
+
self.filter_channels = filter_channels
|
100 |
+
self.n_heads = n_heads
|
101 |
+
self.n_layers = n_layers
|
102 |
+
self.kernel_size = kernel_size
|
103 |
+
self.p_dropout = p_dropout
|
104 |
+
self.proximal_bias = proximal_bias
|
105 |
+
self.proximal_init = proximal_init
|
106 |
+
|
107 |
+
self.drop = nn.Dropout(p_dropout)
|
108 |
+
self.self_attn_layers = nn.LayerList()
|
109 |
+
self.norm_layers_0 = nn.LayerList()
|
110 |
+
self.encdec_attn_layers = nn.LayerList()
|
111 |
+
self.norm_layers_1 = nn.LayerList()
|
112 |
+
self.ffn_layers = nn.LayerList()
|
113 |
+
self.norm_layers_2 = nn.LayerList()
|
114 |
+
for i in range(self.n_layers):
|
115 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
116 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
117 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
118 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
119 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
120 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
121 |
+
|
122 |
+
def forward(self, x, x_mask, h, h_mask):
|
123 |
+
"""
|
124 |
+
x: decoder input
|
125 |
+
h: encoder output
|
126 |
+
"""
|
127 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).astype(dtype=x.dtype)
|
128 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
129 |
+
x = x * x_mask
|
130 |
+
for i in range(self.n_layers):
|
131 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
132 |
+
y = self.drop(y)
|
133 |
+
x = self.norm_layers_0[i](x + y)
|
134 |
+
|
135 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
136 |
+
y = self.drop(y)
|
137 |
+
x = self.norm_layers_1[i](x + y)
|
138 |
+
|
139 |
+
y = self.ffn_layers[i](x, x_mask)
|
140 |
+
y = self.drop(y)
|
141 |
+
x = self.norm_layers_2[i](x + y)
|
142 |
+
x = x * x_mask
|
143 |
+
return x
|
144 |
+
|
145 |
+
|
146 |
+
class MultiHeadAttention(nn.Layer):
|
147 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
148 |
+
super().__init__()
|
149 |
+
assert channels % n_heads == 0
|
150 |
+
|
151 |
+
self.channels = channels
|
152 |
+
self.out_channels = out_channels
|
153 |
+
self.n_heads = n_heads
|
154 |
+
self.p_dropout = p_dropout
|
155 |
+
self.window_size = window_size
|
156 |
+
self.heads_share = heads_share
|
157 |
+
self.block_length = block_length
|
158 |
+
self.proximal_bias = proximal_bias
|
159 |
+
self.proximal_init = proximal_init
|
160 |
+
self.attn = None
|
161 |
+
|
162 |
+
self.k_channels = channels // n_heads
|
163 |
+
|
164 |
+
self.conv_q = nn.Conv1D(channels, channels, 1,)# weight_attr=attr)
|
165 |
+
self.conv_k = nn.Conv1D(channels, channels, 1,)# weight_attr=attr)
|
166 |
+
self.conv_v = nn.Conv1D(channels, channels, 1,)# weight_attr=attr)
|
167 |
+
self.conv_o = nn.Conv1D(channels, out_channels, 1)
|
168 |
+
self.drop = nn.Dropout(p_dropout)
|
169 |
+
|
170 |
+
if window_size is not None:
|
171 |
+
n_heads_rel = 1 if heads_share else n_heads
|
172 |
+
rel_stddev = self.k_channels**-0.5
|
173 |
+
|
174 |
+
rand = paddle.randn((n_heads_rel, window_size * 2 + 1, self.k_channels)) * rel_stddev
|
175 |
+
|
176 |
+
self.emb_rel_k = paddle.create_parameter(rand.shape,'float32',None)
|
177 |
+
self.emb_rel_v = paddle.create_parameter(rand.shape,'float32',None)
|
178 |
+
|
179 |
+
#nn.init.xavier_uniform_(self.conv_q.weight)
|
180 |
+
#nn.init.xavier_uniform_(self.conv_k.weight)
|
181 |
+
#nn.init.xavier_uniform_(self.conv_v.weight)
|
182 |
+
if proximal_init:
|
183 |
+
with paddle.no_grad():
|
184 |
+
self.conv_k.weight = (self.conv_q.weight)
|
185 |
+
self.conv_k.bias = (self.conv_q.bias)
|
186 |
+
|
187 |
+
def forward(self, x, c, attn_mask=None):
|
188 |
+
#print(x)
|
189 |
+
#print(self.conv_q.weight)
|
190 |
+
q = self.conv_q(x)
|
191 |
+
k = self.conv_k(c)
|
192 |
+
v = self.conv_v(c)
|
193 |
+
|
194 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
195 |
+
|
196 |
+
x = self.conv_o(x)
|
197 |
+
return x
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def _masked_fill(x, mask, value:float):
|
201 |
+
y = paddle.full(x.shape, value, x.dtype)
|
202 |
+
return paddle.where(mask, y, x)
|
203 |
+
|
204 |
+
def attention(self, query, key, value, mask=None):
|
205 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
206 |
+
b, d, t_s, t_t = (*key.shape, query.shape[2])
|
207 |
+
query = query.reshape((b, self.n_heads, self.k_channels, t_t)).transpose([0,1,3,2])
|
208 |
+
key = key.reshape((b, self.n_heads, self.k_channels, t_s)).transpose([0,1,3,2])
|
209 |
+
value = value.reshape((b, self.n_heads, self.k_channels, t_s)).transpose([0,1,3,2])
|
210 |
+
|
211 |
+
scores = paddle.matmul(query / math.sqrt(self.k_channels), key.transpose([0,1,3,2])) # 0 1 2 3 -4 -3 -2 -1
|
212 |
+
if self.window_size is not None:
|
213 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
214 |
+
|
215 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
216 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
217 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
218 |
+
scores = scores + scores_local
|
219 |
+
if self.proximal_bias:
|
220 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
221 |
+
scores = scores + self._attention_bias_proximal(t_s).astype(dtype=scores.dtype)
|
222 |
+
if mask is not None:
|
223 |
+
scores = self._masked_fill(scores, mask == 0, -1e4)
|
224 |
+
if self.block_length is not None:
|
225 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
226 |
+
block_mask = paddle.tril(paddle.triu(paddle.ones_like(scores), -self.block_length),self.block_length)
|
227 |
+
scores = self._masked_fill(scores, block_mask == 0, -1e4)
|
228 |
+
p_attn = F.softmax(scores, axis=-1) # [b, n_h, t_t, t_s]
|
229 |
+
p_attn = self.drop(p_attn)
|
230 |
+
output = paddle.matmul(p_attn, value)
|
231 |
+
if self.window_size is not None:
|
232 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
233 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
234 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
235 |
+
output = output.transpose([0,1,3,2]).reshape((b, d, t_t)) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
236 |
+
return output, p_attn
|
237 |
+
|
238 |
+
def _matmul_with_relative_values(self, x, y):
|
239 |
+
"""
|
240 |
+
x: [b, h, l, m]
|
241 |
+
y: [h or 1, m, d]
|
242 |
+
ret: [b, h, l, d]
|
243 |
+
"""
|
244 |
+
ret = paddle.matmul(x, y.unsqueeze(0))
|
245 |
+
return ret
|
246 |
+
|
247 |
+
def _matmul_with_relative_keys(self, x, y):
|
248 |
+
"""
|
249 |
+
x: [b, h, l, d]
|
250 |
+
y: [h or 1, m, d]
|
251 |
+
ret: [b, h, l, m]
|
252 |
+
"""
|
253 |
+
ret = paddle.matmul(x, y.unsqueeze(0).transpose([0,1,3,2]))
|
254 |
+
return ret
|
255 |
+
|
256 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
257 |
+
max_relative_position = 2 * self.window_size + 1
|
258 |
+
# Pad first before slice to avoid using cond ops.
|
259 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
260 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
261 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
262 |
+
if pad_length > 0:
|
263 |
+
padding = commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])
|
264 |
+
|
265 |
+
padded_relative_embeddings = F.pad(
|
266 |
+
x = relative_embeddings.unsqueeze(0),
|
267 |
+
pad = padding[0:4]).squeeze(0)
|
268 |
+
|
269 |
+
else:
|
270 |
+
padded_relative_embeddings = relative_embeddings
|
271 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
272 |
+
return used_relative_embeddings
|
273 |
+
|
274 |
+
def _relative_position_to_absolute_position(self, x):
|
275 |
+
"""
|
276 |
+
x: [b, h, l, 2*l-1]
|
277 |
+
ret: [b, h, l, l]
|
278 |
+
"""
|
279 |
+
batch, heads, length, _ = x.shape
|
280 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
281 |
+
pad_shape = commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])
|
282 |
+
pad_shape = commons.fix_pad_shape(pad_shape, x)
|
283 |
+
x = F.pad(x, pad_shape)
|
284 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
285 |
+
x_flat = x.reshape([batch, heads, length * 2 * length])
|
286 |
+
pad_shape = commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])
|
287 |
+
pad_shape = commons.fix_pad_shape(pad_shape,x_flat)
|
288 |
+
x_flat = F.pad(x_flat, pad_shape, data_format='NCL')
|
289 |
+
# Reshape and slice out the padded elements.
|
290 |
+
x_final = x_flat.reshape([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
291 |
+
return x_final
|
292 |
+
|
293 |
+
def _absolute_position_to_relative_position(self, x):
|
294 |
+
"""
|
295 |
+
x: [b, h, l, l]
|
296 |
+
ret: [b, h, l, 2*l-1]
|
297 |
+
"""
|
298 |
+
batch, heads, length, _ = x.shape
|
299 |
+
# padd along column
|
300 |
+
pad_shape = commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])
|
301 |
+
pad_shape = commons.fix_pad_shape(pad_shape, x)
|
302 |
+
x = F.pad(x, pad_shape)
|
303 |
+
x_flat = x.reshape([batch, heads, length**2 + length*(length -1)])
|
304 |
+
# add 0's in the beginning that will skew the elements after reshape
|
305 |
+
pad_shape = commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])
|
306 |
+
pad_shape = commons.fix_pad_shape(pad_shape, x_flat)
|
307 |
+
x_flat = F.pad(x_flat, pad_shape, data_format='NCL')
|
308 |
+
x_final = x_flat.reshape([batch, heads, length, 2*length])[:,:,:,1:]
|
309 |
+
return x_final
|
310 |
+
|
311 |
+
def _attention_bias_proximal(self, length):
|
312 |
+
"""Bias for self-attention to encourage attention to close positions.
|
313 |
+
Args:
|
314 |
+
length: an integer scalar.
|
315 |
+
Returns:
|
316 |
+
a Tensor with shape [1, 1, length, length]
|
317 |
+
"""
|
318 |
+
r = paddle.arange(length, dtype=np.float32)
|
319 |
+
diff = paddle.unsqueeze(r, 0) - paddle.unsqueeze(r, 1)
|
320 |
+
return paddle.unsqueeze(paddle.unsqueeze(-paddle.log1p(paddle.abs(diff)), 0), 0)
|
321 |
+
|
322 |
+
|
323 |
+
class FFN(nn.Layer):
|
324 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
325 |
+
super().__init__()
|
326 |
+
self.in_channels = in_channels
|
327 |
+
self.out_channels = out_channels
|
328 |
+
self.filter_channels = filter_channels
|
329 |
+
self.kernel_size = kernel_size
|
330 |
+
self.p_dropout = p_dropout
|
331 |
+
self.activation = activation
|
332 |
+
self.causal = causal
|
333 |
+
|
334 |
+
if causal:
|
335 |
+
self.padding = self._causal_padding
|
336 |
+
else:
|
337 |
+
self.padding = self._same_padding
|
338 |
+
|
339 |
+
self.conv_1 = nn.Conv1D(in_channels, filter_channels, kernel_size)
|
340 |
+
self.conv_2 = nn.Conv1D(filter_channels, out_channels, kernel_size)
|
341 |
+
self.drop = nn.Dropout(p_dropout)
|
342 |
+
|
343 |
+
def forward(self, x, x_mask):
|
344 |
+
x = x * x_mask
|
345 |
+
x = self.padding(x)
|
346 |
+
x = self.conv_1(x)
|
347 |
+
if self.activation == "gelu":
|
348 |
+
x = x * F.sigmoid(1.702 * x)
|
349 |
+
else:
|
350 |
+
x = F.relu(x)
|
351 |
+
x = self.drop(x)
|
352 |
+
x = x * x_mask
|
353 |
+
x = self.padding(x)
|
354 |
+
x = self.conv_2(x)
|
355 |
+
return x * x_mask
|
356 |
+
|
357 |
+
def _causal_padding(self, x):
|
358 |
+
if self.kernel_size == 1:
|
359 |
+
return x
|
360 |
+
pad_l = self.kernel_size - 1
|
361 |
+
pad_r = 0
|
362 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
363 |
+
pad_shape:list = commons.convert_pad_shape(padding)
|
364 |
+
pad_shape = commons.fix_pad_shape(pad_shape, x)
|
365 |
+
x = F.pad(x, pad_shape,data_format='NCL')
|
366 |
+
return x
|
367 |
+
|
368 |
+
def _same_padding(self, x):
|
369 |
+
if self.kernel_size == 1:
|
370 |
+
return x
|
371 |
+
pad_l = (self.kernel_size - 1) // 2
|
372 |
+
pad_r = self.kernel_size // 2
|
373 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
374 |
+
pad_shape = commons.convert_pad_shape(padding)
|
375 |
+
pad_shape = commons.fix_pad_shape(pad_shape, x)
|
376 |
+
x = F.pad(x, pad_shape, data_format='NCL')
|
377 |
+
return x
|
modules/commons.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import paddle
|
4 |
+
from paddle import nn
|
5 |
+
from paddle.nn import functional as F
|
6 |
+
|
7 |
+
def slice_pitch_segments(x, ids_str, segment_size=4):
|
8 |
+
ret = paddle.zeros_like(x[:, :segment_size])
|
9 |
+
for i in range(x.shape[0]):
|
10 |
+
idx_str = ids_str[i]
|
11 |
+
idx_end = idx_str + segment_size
|
12 |
+
ret[i] = x[i, idx_str:idx_end]
|
13 |
+
return ret
|
14 |
+
|
15 |
+
def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
|
16 |
+
b, d, t = x.shape
|
17 |
+
if x_lengths is None:
|
18 |
+
x_lengths = t
|
19 |
+
ids_str_max = x_lengths - segment_size + 1
|
20 |
+
ids_str = (paddle.rand([b]) * ids_str_max.astype('float32')).astype(dtype='int64')
|
21 |
+
ret = slice_segments(x, ids_str, segment_size)
|
22 |
+
ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
|
23 |
+
return ret, ret_pitch, ids_str
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
def get_padding(kernel_size, dilation=1):
|
32 |
+
return int((kernel_size*dilation - dilation)/2)
|
33 |
+
|
34 |
+
|
35 |
+
def convert_pad_shape(pad_shape):
|
36 |
+
l = pad_shape[::-1]
|
37 |
+
pad_shape = paddle.to_tensor([item for sublist in l for item in sublist],).flatten().astype('int32')
|
38 |
+
return pad_shape
|
39 |
+
|
40 |
+
|
41 |
+
def intersperse(lst, item):
|
42 |
+
result = [item] * (len(lst) * 2 + 1)
|
43 |
+
result[1::2] = lst
|
44 |
+
return result
|
45 |
+
|
46 |
+
|
47 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
48 |
+
"""KL(P||Q)"""
|
49 |
+
kl = (logs_q - logs_p) - 0.5
|
50 |
+
kl += 0.5 * (paddle.exp(2. * logs_p) + ((m_p - m_q)**2)) * paddle.exp(-2. * logs_q)
|
51 |
+
return kl
|
52 |
+
|
53 |
+
|
54 |
+
def rand_gumbel(shape):
|
55 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
56 |
+
uniform_samples = paddle.rand(shape) * 0.99998 + 0.00001
|
57 |
+
return -paddle.log(-paddle.log(uniform_samples))
|
58 |
+
|
59 |
+
|
60 |
+
def rand_gumbel_like(x):
|
61 |
+
g = rand_gumbel(x.shape).astype(dtype=x.dtype)
|
62 |
+
return g
|
63 |
+
|
64 |
+
|
65 |
+
def slice_segments(x, ids_str, segment_size=4):
|
66 |
+
ret = paddle.zeros_like(x[:, :, :segment_size])
|
67 |
+
for i in range(x.shape[0]):
|
68 |
+
idx_str = ids_str[i]
|
69 |
+
idx_end = idx_str + segment_size
|
70 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
71 |
+
return ret
|
72 |
+
|
73 |
+
|
74 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
75 |
+
b, d, t = x.size()
|
76 |
+
if x_lengths is None:
|
77 |
+
x_lengths = t
|
78 |
+
ids_str_max = x_lengths - segment_size + 1
|
79 |
+
ids_str = (paddle.rand([b]) * ids_str_max).astype('int64')
|
80 |
+
ret = slice_segments(x, ids_str, segment_size)
|
81 |
+
return ret, ids_str
|
82 |
+
|
83 |
+
|
84 |
+
def rand_spec_segments(x, x_lengths=None, segment_size=4):
|
85 |
+
b, d, t = x.size()
|
86 |
+
if x_lengths is None:
|
87 |
+
x_lengths = t
|
88 |
+
ids_str_max = x_lengths - segment_size
|
89 |
+
ids_str = (paddle.rand([b]) * ids_str_max).astype('int64')
|
90 |
+
ret = slice_segments(x, ids_str, segment_size)
|
91 |
+
return ret, ids_str
|
92 |
+
|
93 |
+
|
94 |
+
def get_timing_signal_1d(
|
95 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
96 |
+
position = paddle.arange(length, dtype=np.float32)
|
97 |
+
num_timescales = channels // 2
|
98 |
+
log_timescale_increment = (
|
99 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
100 |
+
(num_timescales - 1))
|
101 |
+
inv_timescales = min_timescale * paddle.exp(
|
102 |
+
paddle.arange(num_timescales, dtype=np.float32) * -log_timescale_increment)
|
103 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
104 |
+
signal = paddle.concat([paddle.sin(scaled_time), paddle.cos(scaled_time)], 0)
|
105 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
106 |
+
signal = signal.reshape((1, channels, length))
|
107 |
+
return signal
|
108 |
+
|
109 |
+
|
110 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
111 |
+
b, channels, length = x.shape
|
112 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
113 |
+
return x + signal.astype(dtype=x.dtype)
|
114 |
+
|
115 |
+
|
116 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
117 |
+
b, channels, length = x.size()
|
118 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
119 |
+
return paddle.concat([x, signal.astype(dtype=x.dtype)], axis)
|
120 |
+
|
121 |
+
|
122 |
+
def subsequent_mask(length):
|
123 |
+
mask = paddle.tril(paddle.ones((length, length))).unsqueeze(0).unsqueeze(0)
|
124 |
+
return mask
|
125 |
+
|
126 |
+
|
127 |
+
#@paddle.jit.to_static # @torch.jit.script
|
128 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
129 |
+
n_channels_int = n_channels[0]
|
130 |
+
in_act = input_a + input_b
|
131 |
+
t_act = paddle.tanh(in_act[:, :n_channels_int, :])
|
132 |
+
s_act = paddle.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
|
133 |
+
print(t_act)
|
134 |
+
print(s_act)
|
135 |
+
acts = t_act * s_act
|
136 |
+
return acts
|
137 |
+
|
138 |
+
def fix_pad_shape(pad_shape:paddle.Tensor, pad_tensor) -> paddle.Tensor: # 飞桨里面的padding函数对pad_shape有比较严格的要求,需要自己修正一下~~~
|
139 |
+
if len(pad_tensor.shape) == 3:
|
140 |
+
return pad_shape[0:2].astype('int32')
|
141 |
+
elif len(pad_tensor.shape) == 4:
|
142 |
+
return pad_shape[0:4].astype('int32')
|
143 |
+
elif len(pad_tensor.shape) == 5:
|
144 |
+
return pad_shape[0:6].astype('int32')
|
145 |
+
return pad_shape.astype('int32')
|
146 |
+
|
147 |
+
def shift_1d(x):
|
148 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
149 |
+
return x
|
150 |
+
|
151 |
+
|
152 |
+
def sequence_mask(length:paddle.Tensor, max_length=None):
|
153 |
+
if max_length is None:
|
154 |
+
max_length = length.max()
|
155 |
+
x = paddle.arange(max_length, dtype=length.dtype)
|
156 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
157 |
+
|
158 |
+
|
159 |
+
def generate_path(duration, mask):
|
160 |
+
"""
|
161 |
+
duration: [b, 1, t_x]
|
162 |
+
mask: [b, 1, t_y, t_x]
|
163 |
+
"""
|
164 |
+
device = duration.device
|
165 |
+
|
166 |
+
b, _, t_y, t_x = mask.shape
|
167 |
+
cum_duration = paddle.cumsum(duration, -1)
|
168 |
+
|
169 |
+
cum_duration_flat = cum_duration.reshape((b * t_x))
|
170 |
+
path = sequence_mask(cum_duration_flat, t_y).astype(mask.dtype)
|
171 |
+
path = path.reshape((b, t_x, t_y))
|
172 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
173 |
+
path = path.unsqueeze(1).transpose([0,1,3,2]) * mask
|
174 |
+
return path
|
175 |
+
|
176 |
+
|
177 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
178 |
+
if isinstance(parameters, paddle.Tensor):
|
179 |
+
parameters = [parameters]
|
180 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
181 |
+
norm_type = float(norm_type)
|
182 |
+
if clip_value is not None:
|
183 |
+
clip_value = float(clip_value)
|
184 |
+
|
185 |
+
total_norm = 0
|
186 |
+
for p in parameters:
|
187 |
+
param_norm = paddle.to_tensor(p.grad).norm(norm_type)
|
188 |
+
total_norm += param_norm.item() ** norm_type
|
189 |
+
if clip_value is not None:
|
190 |
+
paddle.to_tensor(p.grad).clip_(min=-clip_value, max=clip_value)
|
191 |
+
total_norm = total_norm ** (1. / norm_type)
|
192 |
+
return total_norm
|
modules/losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import paddle
|
2 |
+
from paddle.nn import functional as F
|
3 |
+
|
4 |
+
import modules.commons as commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.astype('float32').detach()
|
12 |
+
gl = gl.astype('float32')
|
13 |
+
loss += paddle.mean(paddle.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.astype('float32')
|
24 |
+
dg = dg.astype('float32')
|
25 |
+
r_loss = paddle.mean((1-dr)**2)
|
26 |
+
g_loss = paddle.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.astype('float32')
|
39 |
+
l = paddle.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.astype('float32')
|
52 |
+
logs_q = logs_q.astype('float32')
|
53 |
+
m_p = m_p.astype('float32')
|
54 |
+
logs_p = logs_p.astype('float32')
|
55 |
+
z_mask = z_mask.astype('float32')
|
56 |
+
#print(logs_p)
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * paddle.exp(-2. * logs_p)
|
59 |
+
kl = paddle.sum(kl * z_mask)
|
60 |
+
l = kl / paddle.sum(z_mask)
|
61 |
+
return l
|
modules/mel_processing.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import paddle
|
5 |
+
from paddle import nn
|
6 |
+
import paddle.nn.functional as F
|
7 |
+
import numpy as np
|
8 |
+
import librosa
|
9 |
+
import librosa.util as librosa_util
|
10 |
+
from librosa.util import normalize, pad_center, tiny
|
11 |
+
from scipy.signal import get_window
|
12 |
+
from scipy.io.wavfile import read
|
13 |
+
from librosa.filters import mel as librosa_mel_fn
|
14 |
+
|
15 |
+
MAX_WAV_VALUE = 32768.0
|
16 |
+
|
17 |
+
|
18 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
19 |
+
"""
|
20 |
+
PARAMS
|
21 |
+
------
|
22 |
+
C: compression factor
|
23 |
+
"""
|
24 |
+
return paddle.log(paddle.clip(x, min=clip_val) * C)
|
25 |
+
|
26 |
+
|
27 |
+
def dynamic_range_decompression_torch(x, C=1):
|
28 |
+
"""
|
29 |
+
PARAMS
|
30 |
+
------
|
31 |
+
C: compression factor used to compress
|
32 |
+
"""
|
33 |
+
return paddle.exp(x) / C
|
34 |
+
|
35 |
+
|
36 |
+
def spectral_normalize_torch(magnitudes):
|
37 |
+
output = dynamic_range_compression_torch(magnitudes)
|
38 |
+
return output
|
39 |
+
|
40 |
+
|
41 |
+
def spectral_de_normalize_torch(magnitudes):
|
42 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
43 |
+
return output
|
44 |
+
|
45 |
+
|
46 |
+
mel_basis = {}
|
47 |
+
hann_window = {}
|
48 |
+
|
49 |
+
|
50 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
51 |
+
if paddle.min(y) < -1.:
|
52 |
+
print('min value is ', paddle.min(y))
|
53 |
+
if paddle.max(y) > 1.:
|
54 |
+
print('max value is ', paddle.max(y))
|
55 |
+
|
56 |
+
global hann_window
|
57 |
+
dtype_device = str(y.dtype) + '_' + str(str(y.place)[6:-1])
|
58 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
59 |
+
if wnsize_dtype_device not in hann_window:
|
60 |
+
hann_window[wnsize_dtype_device] = paddle.audio.functional.get_window('hann',win_size).astype(y.dtype)
|
61 |
+
|
62 |
+
y = paddle.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect', data_format='NCL')
|
63 |
+
y = y.squeeze(1)
|
64 |
+
|
65 |
+
spec = paddle.signal.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
66 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
67 |
+
spec = paddle.as_real(spec)
|
68 |
+
spec = paddle.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
69 |
+
return spec
|
70 |
+
|
71 |
+
|
72 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
73 |
+
global mel_basis
|
74 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.place)[6:-1]
|
75 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
76 |
+
if fmax_dtype_device not in mel_basis:
|
77 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
78 |
+
mel_basis[fmax_dtype_device] = paddle.to_tensor(mel).astype(spec.dtype)
|
79 |
+
spec = paddle.matmul(mel_basis[fmax_dtype_device], spec)
|
80 |
+
spec = spectral_normalize_torch(spec)
|
81 |
+
return spec
|
82 |
+
|
83 |
+
|
84 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
85 |
+
if paddle.min(y) < -1.:
|
86 |
+
print('min value is ', paddle.min(y))
|
87 |
+
if paddle.max(y) > 1.:
|
88 |
+
print('max value is ', paddle.max(y))
|
89 |
+
|
90 |
+
global mel_basis, hann_window
|
91 |
+
dtype_device = str(y.dtype) + '_' + str(y.place)[6:-1]
|
92 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
93 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
94 |
+
if fmax_dtype_device not in mel_basis:
|
95 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
96 |
+
mel_basis[fmax_dtype_device] = paddle.to_tensor(mel).astype(y.dtype)
|
97 |
+
if wnsize_dtype_device not in hann_window:
|
98 |
+
hann_window[wnsize_dtype_device] = paddle.audio.functional.get_window('hann',win_size).astype(y.dtype)
|
99 |
+
|
100 |
+
y = paddle.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect',data_format = 'NCL')
|
101 |
+
y = y.squeeze(1)
|
102 |
+
|
103 |
+
spec = paddle.signal.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
104 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
105 |
+
spec = paddle.as_real(spec)
|
106 |
+
spec = paddle.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
107 |
+
|
108 |
+
spec = paddle.matmul(mel_basis[fmax_dtype_device], spec)
|
109 |
+
spec = spectral_normalize_torch(spec)
|
110 |
+
|
111 |
+
return spec
|
modules/modules.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import paddle
|
6 |
+
from paddle import nn
|
7 |
+
from paddle.nn import functional as F
|
8 |
+
|
9 |
+
from paddle.nn import Conv1D, Conv1DTranspose, AvgPool1D, Conv2D
|
10 |
+
from paddle.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import modules.commons as commons
|
13 |
+
from modules.commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Layer):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = paddle.create_parameter([channels],'float32','modules_Layer_Norm_gamma',\
|
26 |
+
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=1.0))) # ones,shape = [channels]
|
27 |
+
self.beta = paddle.create_parameter([channels],'float32','modules_Layer_Norm_beta',\
|
28 |
+
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0))) # zeros,shape = [channels]
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = x.transpose([0,2,1])#x.transpose(1, -1)
|
32 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
33 |
+
return x.transpose([0,2,1])#x.transpose(1, -1)
|
34 |
+
|
35 |
+
|
36 |
+
class ConvReluNorm(nn.Layer):
|
37 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
38 |
+
super().__init__()
|
39 |
+
self.in_channels = in_channels
|
40 |
+
self.hidden_channels = hidden_channels
|
41 |
+
self.out_channels = out_channels
|
42 |
+
self.kernel_size = kernel_size
|
43 |
+
self.n_layers = n_layers
|
44 |
+
self.p_dropout = p_dropout
|
45 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
46 |
+
|
47 |
+
self.conv_layers = nn.LayerList()
|
48 |
+
self.norm_layers = nn.LayerList()
|
49 |
+
self.conv_layers.append(nn.Conv1D(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
50 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
51 |
+
self.relu_drop = nn.Sequential(
|
52 |
+
nn.ReLU(),
|
53 |
+
nn.Dropout(p_dropout))
|
54 |
+
for _ in range(n_layers-1):
|
55 |
+
self.conv_layers.append(nn.Conv1D(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
56 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
57 |
+
att = paddle.ParamAttr('modules_ConvReluNorm_att',initializer = paddle.nn.initializer.Constant(value=0.0)) # น้มใ
|
58 |
+
self.proj = nn.Conv1D(hidden_channels, out_channels, 1, weight_attr=att, bias_attr=att)
|
59 |
+
#self.proj.weight.data.zero_()
|
60 |
+
#self.proj.bias.data.zero_()
|
61 |
+
|
62 |
+
def forward(self, x, x_mask):
|
63 |
+
x_org = x
|
64 |
+
for i in range(self.n_layers):
|
65 |
+
x = self.conv_layers[i](x * x_mask)
|
66 |
+
x = self.norm_layers[i](x)
|
67 |
+
x = self.relu_drop(x)
|
68 |
+
x = x_org + self.proj(x)
|
69 |
+
return x * x_mask
|
70 |
+
|
71 |
+
|
72 |
+
class DDSConv(nn.Layer):
|
73 |
+
"""
|
74 |
+
Dialted and Depth-Separable Convolution
|
75 |
+
"""
|
76 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
77 |
+
super().__init__()
|
78 |
+
self.channels = channels
|
79 |
+
self.kernel_size = kernel_size
|
80 |
+
self.n_layers = n_layers
|
81 |
+
self.p_dropout = p_dropout
|
82 |
+
|
83 |
+
self.drop = nn.Dropout(p_dropout)
|
84 |
+
self.convs_sep = nn.LayerList()
|
85 |
+
self.convs_1x1 = nn.LayerList()
|
86 |
+
self.norms_1 = nn.LayerList()
|
87 |
+
self.norms_2 = nn.LayerList()
|
88 |
+
for i in range(n_layers):
|
89 |
+
dilation = kernel_size ** i
|
90 |
+
padding = (kernel_size * dilation - dilation) // 2
|
91 |
+
self.convs_sep.append(nn.Conv1D(channels, channels, kernel_size,
|
92 |
+
groups=channels, dilation=dilation, padding=padding
|
93 |
+
))
|
94 |
+
self.convs_1x1.append(nn.Conv1D(channels, channels, 1))
|
95 |
+
self.norms_1.append(LayerNorm(channels))
|
96 |
+
self.norms_2.append(LayerNorm(channels))
|
97 |
+
|
98 |
+
def forward(self, x, x_mask, g=None):
|
99 |
+
if g is not None:
|
100 |
+
x = x + g
|
101 |
+
for i in range(self.n_layers):
|
102 |
+
y = self.convs_sep[i](x * x_mask)
|
103 |
+
y = self.norms_1[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.convs_1x1[i](y)
|
106 |
+
y = self.norms_2[i](y)
|
107 |
+
y = F.gelu(y)
|
108 |
+
y = self.drop(y)
|
109 |
+
x = x + y
|
110 |
+
return x * x_mask
|
111 |
+
|
112 |
+
|
113 |
+
class WN(paddle.nn.Layer):
|
114 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
115 |
+
super(WN, self).__init__()
|
116 |
+
assert(kernel_size % 2 == 1)
|
117 |
+
self.hidden_channels =hidden_channels
|
118 |
+
self.kernel_size = kernel_size,
|
119 |
+
self.dilation_rate = dilation_rate
|
120 |
+
self.n_layers = n_layers
|
121 |
+
self.gin_channels = gin_channels
|
122 |
+
self.p_dropout = p_dropout
|
123 |
+
|
124 |
+
self.in_layers = paddle.nn.LayerList()
|
125 |
+
self.res_skip_layers = paddle.nn.LayerList()
|
126 |
+
self.drop = nn.Dropout(p_dropout)
|
127 |
+
|
128 |
+
if gin_channels != 0:
|
129 |
+
cond_layer = paddle.nn.Conv1D(gin_channels, 2*hidden_channels*n_layers, 1)
|
130 |
+
self.cond_layer = paddle.nn.utils.weight_norm(cond_layer, name='weight')
|
131 |
+
|
132 |
+
for i in range(n_layers):
|
133 |
+
dilation = dilation_rate ** i
|
134 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
135 |
+
in_layer = paddle.nn.Conv1D(hidden_channels, 2*hidden_channels, kernel_size,
|
136 |
+
dilation=dilation, padding=padding)
|
137 |
+
in_layer = paddle.nn.utils.weight_norm(in_layer, name='weight')
|
138 |
+
self.in_layers.append(in_layer)
|
139 |
+
|
140 |
+
# last one is not necessary
|
141 |
+
if i < n_layers - 1:
|
142 |
+
res_skip_channels = 2 * hidden_channels
|
143 |
+
else:
|
144 |
+
res_skip_channels = hidden_channels
|
145 |
+
|
146 |
+
res_skip_layer = paddle.nn.Conv1D(hidden_channels, res_skip_channels, 1)
|
147 |
+
res_skip_layer = paddle.nn.utils.weight_norm(res_skip_layer, name='weight')
|
148 |
+
self.res_skip_layers.append(res_skip_layer)
|
149 |
+
|
150 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
151 |
+
output = paddle.zeros_like(x,name = 'module_WN_forward_output')
|
152 |
+
|
153 |
+
if g is not None:
|
154 |
+
g = self.cond_layer(g)
|
155 |
+
|
156 |
+
for i in range(self.n_layers):
|
157 |
+
x_in = self.in_layers[i](x)
|
158 |
+
if g is not None:
|
159 |
+
cond_offset = i * 2 * self.hidden_channels
|
160 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
161 |
+
else:
|
162 |
+
g_l = paddle.zeros_like(x_in,name = 'module_WN_forward_gl')
|
163 |
+
|
164 |
+
input_a=x_in; input_b=g_l
|
165 |
+
n_channels_int = self.hidden_channels
|
166 |
+
in_act = input_a + input_b
|
167 |
+
t_act = paddle.tanh(in_act[:, :n_channels_int, :])
|
168 |
+
s_act = paddle.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
|
169 |
+
acts = t_act * s_act
|
170 |
+
|
171 |
+
acts = self.drop(acts)
|
172 |
+
|
173 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
174 |
+
if i < self.n_layers - 1:
|
175 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
176 |
+
x = (x + res_acts) * x_mask
|
177 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
178 |
+
else:
|
179 |
+
output = output + res_skip_acts
|
180 |
+
return output * x_mask
|
181 |
+
|
182 |
+
def remove_weight_norm(self):
|
183 |
+
if self.gin_channels != 0:
|
184 |
+
paddle.nn.utils.remove_weight_norm(self.cond_layer)
|
185 |
+
for l in self.in_layers:
|
186 |
+
paddle.nn.utils.remove_weight_norm(l)
|
187 |
+
for l in self.res_skip_layers:
|
188 |
+
paddle.nn.utils.remove_weight_norm(l)
|
189 |
+
|
190 |
+
|
191 |
+
class ResBlock1(paddle.nn.Layer):
|
192 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
193 |
+
super(ResBlock1, self).__init__()
|
194 |
+
self.convs1 = nn.LayerList([
|
195 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[0],
|
196 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
197 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[1],
|
198 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
199 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[2],
|
200 |
+
padding=get_padding(kernel_size, dilation[2])))
|
201 |
+
])
|
202 |
+
self.convs1.apply(init_weights)
|
203 |
+
|
204 |
+
self.convs2 = nn.LayerList([
|
205 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1,
|
206 |
+
padding=get_padding(kernel_size, 1))),
|
207 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1,
|
208 |
+
padding=get_padding(kernel_size, 1))),
|
209 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1,
|
210 |
+
padding=get_padding(kernel_size, 1)))
|
211 |
+
])
|
212 |
+
self.convs2.apply(init_weights)
|
213 |
+
|
214 |
+
def forward(self, x, x_mask=None):
|
215 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
216 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
217 |
+
if x_mask is not None:
|
218 |
+
xt = xt * x_mask
|
219 |
+
xt = c1(xt)
|
220 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
221 |
+
if x_mask is not None:
|
222 |
+
xt = xt * x_mask
|
223 |
+
xt = c2(xt)
|
224 |
+
x = xt + x
|
225 |
+
if x_mask is not None:
|
226 |
+
x = x * x_mask
|
227 |
+
return x
|
228 |
+
|
229 |
+
def remove_weight_norm(self):
|
230 |
+
for l in self.convs1:
|
231 |
+
remove_weight_norm(l)
|
232 |
+
for l in self.convs2:
|
233 |
+
remove_weight_norm(l)
|
234 |
+
|
235 |
+
|
236 |
+
class ResBlock2(paddle.nn.Layer):
|
237 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
238 |
+
super(ResBlock2, self).__init__()
|
239 |
+
self.convs = nn.LayerList([
|
240 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[0],
|
241 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
242 |
+
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[1],
|
243 |
+
padding=get_padding(kernel_size, dilation[1])))
|
244 |
+
])
|
245 |
+
self.convs.apply(init_weights)
|
246 |
+
|
247 |
+
def forward(self, x, x_mask=None):
|
248 |
+
for c in self.convs:
|
249 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
250 |
+
if x_mask is not None:
|
251 |
+
xt = xt * x_mask
|
252 |
+
xt = c(xt)
|
253 |
+
x = xt + x
|
254 |
+
if x_mask is not None:
|
255 |
+
x = x * x_mask
|
256 |
+
return x
|
257 |
+
|
258 |
+
def remove_weight_norm(self):
|
259 |
+
for l in self.convs:
|
260 |
+
remove_weight_norm(l)
|
261 |
+
|
262 |
+
|
263 |
+
class Log(nn.Layer):
|
264 |
+
|
265 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
266 |
+
if not reverse:
|
267 |
+
y = paddle.log(paddle.clip(x, 1e-5)) * x_mask
|
268 |
+
logdet = paddle.sum(-y, [1, 2])
|
269 |
+
return y, logdet
|
270 |
+
else:
|
271 |
+
x = paddle.exp(x) * x_mask
|
272 |
+
return x
|
273 |
+
|
274 |
+
|
275 |
+
class Flip(nn.Layer):
|
276 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
277 |
+
x = paddle.flip(x, [1])
|
278 |
+
if not reverse:
|
279 |
+
logdet = paddle.zeros([x.shape[0]]).astype(x.dtype)
|
280 |
+
return x, logdet
|
281 |
+
else:
|
282 |
+
return x
|
283 |
+
|
284 |
+
|
285 |
+
class ElementwiseAffine(nn.Layer):
|
286 |
+
def __init__(self, channels):
|
287 |
+
super().__init__()
|
288 |
+
self.channels = channels
|
289 |
+
self.m = paddle.create_parameter([channels,1],'float32',None,\
|
290 |
+
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0)))
|
291 |
+
self.logs = paddle.create_parameter([channels,1],'float32',None,\
|
292 |
+
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0)))
|
293 |
+
|
294 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
295 |
+
if not reverse:
|
296 |
+
y = self.m + paddle.exp(self.logs) * x
|
297 |
+
y = y * x_mask
|
298 |
+
logdet = paddle.sum(self.logs * x_mask, [1,2])
|
299 |
+
return y, logdet
|
300 |
+
else:
|
301 |
+
x = (x - self.m) * paddle.exp(-self.logs) * x_mask
|
302 |
+
return x
|
303 |
+
|
304 |
+
|
305 |
+
class ResidualCouplingLayer(nn.Layer):
|
306 |
+
def __init__(self,
|
307 |
+
channels,
|
308 |
+
hidden_channels,
|
309 |
+
kernel_size,
|
310 |
+
dilation_rate,
|
311 |
+
n_layers,
|
312 |
+
p_dropout=0,
|
313 |
+
gin_channels=0,
|
314 |
+
mean_only=False):
|
315 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
316 |
+
super().__init__()
|
317 |
+
self.channels = channels
|
318 |
+
self.hidden_channels = hidden_channels
|
319 |
+
self.kernel_size = kernel_size
|
320 |
+
self.dilation_rate = dilation_rate
|
321 |
+
self.n_layers = n_layers
|
322 |
+
self.half_channels = channels // 2
|
323 |
+
self.mean_only = mean_only
|
324 |
+
|
325 |
+
self.pre = nn.Conv1D(self.half_channels, hidden_channels, 1)
|
326 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
327 |
+
att = paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0)) # น้มใ
|
328 |
+
self.post = nn.Conv1D(hidden_channels, self.half_channels * (2 - mean_only), 1,weight_attr=att, bias_attr=att)
|
329 |
+
#self.post.weight.data.zero_()
|
330 |
+
#self.post.bias.data.zero_()
|
331 |
+
|
332 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
333 |
+
x0, x1 = paddle.split(x, [self.half_channels]*2, 1)
|
334 |
+
h = self.pre(x0) * x_mask
|
335 |
+
h = self.enc(h, x_mask, g=g)
|
336 |
+
stats = self.post(h) * x_mask
|
337 |
+
if not self.mean_only:
|
338 |
+
m, logs = paddle.split(stats, [self.half_channels]*2, 1)
|
339 |
+
else:
|
340 |
+
m = stats
|
341 |
+
logs = paddle.zeros_like(m)
|
342 |
+
|
343 |
+
if not reverse:
|
344 |
+
x1 = m + x1 * paddle.exp(logs) * x_mask
|
345 |
+
x = paddle.concat([x0, x1], 1)
|
346 |
+
logdet = paddle.sum(logs, [1,2])
|
347 |
+
return x, logdet
|
348 |
+
else:
|
349 |
+
x1 = (x1 - m) * paddle.exp(-logs) * x_mask
|
350 |
+
x = paddle.concat([x0, x1], 1)
|
351 |
+
return x
|
output_2stems/blue-instrumental.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9cdb5adc7ccd29f82f8f0d13adbdc83d4f8d9e56ea6f56d206f44e06e6ed690
|
3 |
+
size 2704274
|
output_2stems/blue-vocals.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59edf5461750769e48eb8d72ab41bfbe92a2483d6fcf725a87fa52659d8400ac
|
3 |
+
size 2704274
|
output_2stems/temp-instrumental.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3583c87e8e45021d925579ef0f229ec88c6c73846509c6d08c03db0a18faba5e
|
3 |
+
size 2704274
|
output_2stems/temp-vocals.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80b9fe08d766a205dc0e60f2fe80b951ec95c35a2c32fbc2bb72e98a7b3ccfff
|
3 |
+
size 2704274
|
paddle_infer_shape.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 这个脚本文件用于更改静态图的静态Shape为动态Shape,从飞桨的GitHub上面复制的
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
|
5 |
+
def process_old_ops_desc(program):
|
6 |
+
for i in range(len(program.blocks[0].ops)):
|
7 |
+
if program.blocks[0].ops[i].type == "matmul":
|
8 |
+
if not program.blocks[0].ops[i].has_attr("head_number"):
|
9 |
+
program.blocks[0].ops[i]._set_attr("head_number", 1)
|
10 |
+
|
11 |
+
|
12 |
+
def infer_shape(program, input_shape_dict):
|
13 |
+
import paddle
|
14 |
+
paddle.enable_static()
|
15 |
+
import paddle.fluid as fluid
|
16 |
+
|
17 |
+
OP_WITHOUT_KERNEL_SET = {
|
18 |
+
'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
|
19 |
+
'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
|
20 |
+
'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
|
21 |
+
'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
|
22 |
+
'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
|
23 |
+
'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
|
24 |
+
'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
|
25 |
+
'copy_cross_scope'
|
26 |
+
}
|
27 |
+
model_version = program.desc._version()
|
28 |
+
paddle_version = paddle.__version__
|
29 |
+
major_ver = model_version // 1000000
|
30 |
+
minor_ver = (model_version - major_ver * 1000000) // 1000
|
31 |
+
patch_ver = model_version - major_ver * 1000000 - minor_ver * 1000
|
32 |
+
model_version = "{}.{}.{}".format(major_ver, minor_ver, patch_ver)
|
33 |
+
if model_version != paddle_version:
|
34 |
+
print(
|
35 |
+
"[WARNING] The model is saved by paddlepaddle v{}, but now your paddlepaddle is version of {}, this difference may cause error, it is recommend you reinstall a same version of paddlepaddle for this model".
|
36 |
+
format(model_version, paddle_version))
|
37 |
+
for k, v in input_shape_dict.items():
|
38 |
+
program.blocks[0].var(k).desc.set_shape(v)
|
39 |
+
for i in range(len(program.blocks)):
|
40 |
+
for j in range(len(program.blocks[0].ops)):
|
41 |
+
if program.blocks[i].ops[j].type in OP_WITHOUT_KERNEL_SET:
|
42 |
+
continue
|
43 |
+
program.blocks[i].ops[j].desc.infer_shape(program.blocks[i].desc)
|
44 |
+
|
45 |
+
|
46 |
+
def parse_arguments():
|
47 |
+
parser = argparse.ArgumentParser()
|
48 |
+
parser.add_argument(
|
49 |
+
'--model_dir',
|
50 |
+
required=True,
|
51 |
+
help='Path of directory saved the input model.')
|
52 |
+
parser.add_argument(
|
53 |
+
'--model_filename', required=True, help='The input model file name.')
|
54 |
+
parser.add_argument(
|
55 |
+
'--params_filename', required=True, help='The parameters file name.')
|
56 |
+
parser.add_argument(
|
57 |
+
'--save_dir',
|
58 |
+
required=True,
|
59 |
+
help='Path of directory to save the new exported model.')
|
60 |
+
parser.add_argument(
|
61 |
+
'--input_shape_dict', required=True, help="The new shape information.")
|
62 |
+
return parser.parse_args()
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
args = parse_arguments()
|
67 |
+
import paddle
|
68 |
+
paddle.enable_static()
|
69 |
+
import paddle.fluid as fluid
|
70 |
+
input_shape_dict_str = args.input_shape_dict
|
71 |
+
input_shape_dict = eval(input_shape_dict_str)
|
72 |
+
print("Start to load paddle model...")
|
73 |
+
exe = fluid.Executor(fluid.CPUPlace())
|
74 |
+
[prog, ipts, outs] = fluid.io.load_inference_model(
|
75 |
+
args.model_dir,
|
76 |
+
exe,
|
77 |
+
model_filename=args.model_filename,
|
78 |
+
params_filename=args.params_filename)
|
79 |
+
process_old_ops_desc(prog)
|
80 |
+
infer_shape(prog, input_shape_dict)
|
81 |
+
fluid.io.save_inference_model(
|
82 |
+
args.save_dir,
|
83 |
+
ipts,
|
84 |
+
outs,
|
85 |
+
exe,
|
86 |
+
prog,
|
87 |
+
model_filename=args.model_filename,
|
88 |
+
params_filename=args.params_filename)
|
preprocess_flist_config.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
|
5 |
+
from tqdm import tqdm
|
6 |
+
from random import shuffle
|
7 |
+
import json
|
8 |
+
import wave
|
9 |
+
|
10 |
+
config_template = json.load(open("configs/config.json"))
|
11 |
+
|
12 |
+
pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
|
13 |
+
|
14 |
+
def get_wav_duration(file_path):
|
15 |
+
with wave.open(file_path, 'rb') as wav_file:
|
16 |
+
# 获取音频帧数
|
17 |
+
n_frames = wav_file.getnframes()
|
18 |
+
# 获取采样率
|
19 |
+
framerate = wav_file.getframerate()
|
20 |
+
# 计算时长(秒)
|
21 |
+
duration = n_frames / float(framerate)
|
22 |
+
return duration
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
|
27 |
+
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
|
28 |
+
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
|
29 |
+
parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
|
30 |
+
args = parser.parse_args()
|
31 |
+
|
32 |
+
train = []
|
33 |
+
val = []
|
34 |
+
test = []
|
35 |
+
idx = 0
|
36 |
+
spk_dict = {}
|
37 |
+
spk_id = 0
|
38 |
+
for speaker in tqdm(os.listdir(args.source_dir)):
|
39 |
+
spk_dict[speaker] = spk_id
|
40 |
+
spk_id += 1
|
41 |
+
wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
|
42 |
+
new_wavs = []
|
43 |
+
for file in wavs:
|
44 |
+
if not file.endswith("wav"):
|
45 |
+
continue
|
46 |
+
if not pattern.match(file):
|
47 |
+
print(f"警告:文件名{file}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
|
48 |
+
print('梅花自己测试发现是会出现问题的。')
|
49 |
+
if get_wav_duration(file) < 0.3:
|
50 |
+
print("跳过太短的音频:", file)
|
51 |
+
continue
|
52 |
+
new_wavs.append(file)
|
53 |
+
wavs = new_wavs
|
54 |
+
shuffle(wavs)
|
55 |
+
train += wavs[2:-2]
|
56 |
+
val += wavs[:2]
|
57 |
+
test += wavs[-2:]
|
58 |
+
|
59 |
+
shuffle(train)
|
60 |
+
shuffle(val)
|
61 |
+
shuffle(test)
|
62 |
+
|
63 |
+
print("写入:", args.train_list)
|
64 |
+
with open(args.train_list, "w") as f:
|
65 |
+
for fname in tqdm(train):
|
66 |
+
wavpath = fname
|
67 |
+
f.write(wavpath + "\n")
|
68 |
+
|
69 |
+
print("写入:", args.val_list)
|
70 |
+
with open(args.val_list, "w") as f:
|
71 |
+
for fname in tqdm(val):
|
72 |
+
wavpath = fname
|
73 |
+
f.write(wavpath + "\n")
|
74 |
+
|
75 |
+
print("写入:", args.test_list)
|
76 |
+
with open(args.test_list, "w") as f:
|
77 |
+
for fname in tqdm(test):
|
78 |
+
wavpath = fname
|
79 |
+
f.write(wavpath + "\n")
|
80 |
+
|
81 |
+
config_template["spk"] = spk_dict
|
82 |
+
print("写入:configs/config.json")
|
83 |
+
with open("configs/config.json", "w") as f:
|
84 |
+
json.dump(config_template, f, indent=2)
|
preprocess_hubert_f0.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import multiprocessing
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from random import shuffle
|
6 |
+
|
7 |
+
import paddle
|
8 |
+
from glob import glob
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
import utils
|
12 |
+
import logging
|
13 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
14 |
+
import librosa
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
hps = utils.get_hparams_from_file("configs/config.json")
|
18 |
+
sampling_rate = hps.data.sampling_rate
|
19 |
+
hop_length = hps.data.hop_length
|
20 |
+
|
21 |
+
|
22 |
+
def process_one(filename, hmodel):
|
23 |
+
# print(filename)
|
24 |
+
wav, sr = librosa.load(filename, sr=sampling_rate)
|
25 |
+
soft_path = filename + ".soft.pdtensor"
|
26 |
+
if not os.path.exists(soft_path):
|
27 |
+
devive = "cuda" if paddle.device.is_compiled_with_cuda() else "cpu"
|
28 |
+
wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
|
29 |
+
wav16k = paddle.to_tensor(wav16k).cpu() if devive=='cpu' else paddle.to_tensor(wav16k).cuda()
|
30 |
+
c:paddle.Tensor = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
|
31 |
+
paddle.save(c.cpu(), soft_path)
|
32 |
+
f0_path = filename + ".f0.npy"
|
33 |
+
if not os.path.exists(f0_path):
|
34 |
+
f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
|
35 |
+
np.save(f0_path, f0)
|
36 |
+
|
37 |
+
|
38 |
+
def process_batch(filenames):
|
39 |
+
print("正在加载内容的HuBERT……")
|
40 |
+
device = "cuda" if paddle.device.is_compiled_with_cuda() else "cpu"
|
41 |
+
hmodel = utils.get_hubert_model()
|
42 |
+
print("HuBERT已被装载。")
|
43 |
+
for filename in tqdm(filenames):
|
44 |
+
process_one(filename, hmodel)
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
parser = argparse.ArgumentParser()
|
49 |
+
parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
|
53 |
+
shuffle(filenames)
|
54 |
+
multiprocessing.set_start_method('spawn',force=True)
|
55 |
+
|
56 |
+
num_processes = 1
|
57 |
+
chunk_size = int(math.ceil(len(filenames) / num_processes))
|
58 |
+
chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
|
59 |
+
print([len(c) for c in chunks])
|
60 |
+
processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
|
61 |
+
for p in processes:
|
62 |
+
p.start()
|
raw/1.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5014db90a4bd53a18054ae2a2f9b1e733c8c474a6872beace1c3bd716b2cb61f
|
3 |
+
size 2484268
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numba==0.56.4
|
2 |
+
llvmlite==0.39.1
|
3 |
+
matplotlib
|
4 |
+
msgpack
|
5 |
+
librosa==0.10.0.post2
|
6 |
+
onnxruntime-gpu
|
7 |
+
pyworld==0.2.11.post0
|
8 |
+
praat-parselmouth
|
9 |
+
numpy==1.23.4
|
10 |
+
paddleaudio==1.0.2
|
11 |
+
gradio==3.19.1
|
12 |
+
pydub
|
13 |
+
ffmpeg-python
|
14 |
+
paddlepaddle==2.5.1
|
15 |
+
visualdl
|
16 |
+
tqdm
|