import copy import math import numpy as np import paddle from paddle import nn from paddle.nn import functional as F import modules.commons as commons import modules.modules as modules from modules.modules import LayerNorm class FFT(nn.Layer): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.proximal_bias = proximal_bias self.proximal_init = proximal_init self.drop = nn.Dropout(p_dropout) self.self_attn_layers = nn.LayerList() self.norm_layers_0 = nn.LayerList() self.ffn_layers = nn.LayerList() self.norm_layers_1 = nn.LayerList() for i in range(self.n_layers): self.self_attn_layers.append( MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) self.norm_layers_0.append(LayerNorm(hidden_channels)) self.ffn_layers.append( FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) self.norm_layers_1.append(LayerNorm(hidden_channels)) def forward(self, x, x_mask): """ x: decoder input h: encoder output """ self_attn_mask = commons.subsequent_mask(x_mask.shape[2]).astype(dtype=x.dtype) x = x * x_mask for i in range(self.n_layers): y = self.self_attn_layers[i](x, x, self_attn_mask) y = self.drop(y) x = self.norm_layers_0[i](x + y) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = self.norm_layers_1[i](x + y) x = x * x_mask return x class Encoder(nn.Layer): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.drop = nn.Dropout(p_dropout) self.attn_layers = nn.LayerList() self.norm_layers_1 = nn.LayerList() self.ffn_layers = nn.LayerList() self.norm_layers_2 = nn.LayerList() for i in range(self.n_layers): self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) self.norm_layers_1.append(LayerNorm(hidden_channels)) self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) self.norm_layers_2.append(LayerNorm(hidden_channels)) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) x = x * x_mask for i in range(self.n_layers): y = self.attn_layers[i](x, x, attn_mask) y = self.drop(y) x = self.norm_layers_1[i](x + y) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = self.norm_layers_2[i](x + y) x = x * x_mask return x class Decoder(nn.Layer): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.proximal_bias = proximal_bias self.proximal_init = proximal_init self.drop = nn.Dropout(p_dropout) self.self_attn_layers = nn.LayerList() self.norm_layers_0 = nn.LayerList() self.encdec_attn_layers = nn.LayerList() self.norm_layers_1 = nn.LayerList() self.ffn_layers = nn.LayerList() self.norm_layers_2 = nn.LayerList() for i in range(self.n_layers): self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) self.norm_layers_0.append(LayerNorm(hidden_channels)) self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) self.norm_layers_1.append(LayerNorm(hidden_channels)) self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) self.norm_layers_2.append(LayerNorm(hidden_channels)) def forward(self, x, x_mask, h, h_mask): """ x: decoder input h: encoder output """ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).astype(dtype=x.dtype) encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) x = x * x_mask for i in range(self.n_layers): y = self.self_attn_layers[i](x, x, self_attn_mask) y = self.drop(y) x = self.norm_layers_0[i](x + y) y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) y = self.drop(y) x = self.norm_layers_1[i](x + y) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = self.norm_layers_2[i](x + y) x = x * x_mask return x class MultiHeadAttention(nn.Layer): def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): super().__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.p_dropout = p_dropout self.window_size = window_size self.heads_share = heads_share self.block_length = block_length self.proximal_bias = proximal_bias self.proximal_init = proximal_init self.attn = None self.k_channels = channels // n_heads self.conv_q = nn.Conv1D(channels, channels, 1,)# weight_attr=attr) self.conv_k = nn.Conv1D(channels, channels, 1,)# weight_attr=attr) self.conv_v = nn.Conv1D(channels, channels, 1,)# weight_attr=attr) self.conv_o = nn.Conv1D(channels, out_channels, 1) self.drop = nn.Dropout(p_dropout) if window_size is not None: n_heads_rel = 1 if heads_share else n_heads rel_stddev = self.k_channels**-0.5 rand = paddle.randn((n_heads_rel, window_size * 2 + 1, self.k_channels)) * rel_stddev self.emb_rel_k = paddle.create_parameter(rand.shape,'float32',None) self.emb_rel_v = paddle.create_parameter(rand.shape,'float32',None) #nn.init.xavier_uniform_(self.conv_q.weight) #nn.init.xavier_uniform_(self.conv_k.weight) #nn.init.xavier_uniform_(self.conv_v.weight) if proximal_init: with paddle.no_grad(): self.conv_k.weight = (self.conv_q.weight) self.conv_k.bias = (self.conv_q.bias) def forward(self, x, c, attn_mask=None): #print(x) #print(self.conv_q.weight) q = self.conv_q(x) k = self.conv_k(c) v = self.conv_v(c) x, self.attn = self.attention(q, k, v, mask=attn_mask) x = self.conv_o(x) return x @staticmethod def _masked_fill(x, mask, value:float): y = paddle.full(x.shape, value, x.dtype) return paddle.where(mask, y, x) def attention(self, query, key, value, mask=None): # reshape [b, d, t] -> [b, n_h, t, d_k] b, d, t_s, t_t = (*key.shape, query.shape[2]) query = query.reshape((b, self.n_heads, self.k_channels, t_t)).transpose([0,1,3,2]) key = key.reshape((b, self.n_heads, self.k_channels, t_s)).transpose([0,1,3,2]) value = value.reshape((b, self.n_heads, self.k_channels, t_s)).transpose([0,1,3,2]) scores = paddle.matmul(query / math.sqrt(self.k_channels), key.transpose([0,1,3,2])) # 0 1 2 3 -4 -3 -2 -1 if self.window_size is not None: assert t_s == t_t, "Relative attention is only available for self-attention." key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) scores_local = self._relative_position_to_absolute_position(rel_logits) scores = scores + scores_local if self.proximal_bias: assert t_s == t_t, "Proximal bias is only available for self-attention." scores = scores + self._attention_bias_proximal(t_s).astype(dtype=scores.dtype) if mask is not None: scores = self._masked_fill(scores, mask == 0, -1e4) if self.block_length is not None: assert t_s == t_t, "Local attention is only available for self-attention." block_mask = paddle.tril(paddle.triu(paddle.ones_like(scores), -self.block_length),self.block_length) scores = self._masked_fill(scores, block_mask == 0, -1e4) p_attn = F.softmax(scores, axis=-1) # [b, n_h, t_t, t_s] p_attn = self.drop(p_attn) output = paddle.matmul(p_attn, value) if self.window_size is not None: relative_weights = self._absolute_position_to_relative_position(p_attn) value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) output = output.transpose([0,1,3,2]).reshape((b, d, t_t)) # [b, n_h, t_t, d_k] -> [b, d, t_t] return output, p_attn def _matmul_with_relative_values(self, x, y): """ x: [b, h, l, m] y: [h or 1, m, d] ret: [b, h, l, d] """ ret = paddle.matmul(x, y.unsqueeze(0)) return ret def _matmul_with_relative_keys(self, x, y): """ x: [b, h, l, d] y: [h or 1, m, d] ret: [b, h, l, m] """ ret = paddle.matmul(x, y.unsqueeze(0).transpose([0,1,3,2])) return ret def _get_relative_embeddings(self, relative_embeddings, length): max_relative_position = 2 * self.window_size + 1 # Pad first before slice to avoid using cond ops. pad_length = max(length - (self.window_size + 1), 0) slice_start_position = max((self.window_size + 1) - length, 0) slice_end_position = slice_start_position + 2 * length - 1 if pad_length > 0: padding = commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]) padded_relative_embeddings = F.pad( x = relative_embeddings.unsqueeze(0), pad = padding[0:4]).squeeze(0) else: padded_relative_embeddings = relative_embeddings used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] return used_relative_embeddings def _relative_position_to_absolute_position(self, x): """ x: [b, h, l, 2*l-1] ret: [b, h, l, l] """ batch, heads, length, _ = x.shape # Concat columns of pad to shift from relative to absolute indexing. pad_shape = commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]) pad_shape = commons.fix_pad_shape(pad_shape, x) x = F.pad(x, pad_shape) # Concat extra elements so to add up to shape (len+1, 2*len-1). x_flat = x.reshape([batch, heads, length * 2 * length]) pad_shape = commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]) pad_shape = commons.fix_pad_shape(pad_shape,x_flat) x_flat = F.pad(x_flat, pad_shape, data_format='NCL') # Reshape and slice out the padded elements. x_final = x_flat.reshape([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] return x_final def _absolute_position_to_relative_position(self, x): """ x: [b, h, l, l] ret: [b, h, l, 2*l-1] """ batch, heads, length, _ = x.shape # padd along column pad_shape = commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]) pad_shape = commons.fix_pad_shape(pad_shape, x) x = F.pad(x, pad_shape) x_flat = x.reshape([batch, heads, length**2 + length*(length -1)]) # add 0's in the beginning that will skew the elements after reshape pad_shape = commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]) pad_shape = commons.fix_pad_shape(pad_shape, x_flat) x_flat = F.pad(x_flat, pad_shape, data_format='NCL') x_final = x_flat.reshape([batch, heads, length, 2*length])[:,:,:,1:] return x_final def _attention_bias_proximal(self, length): """Bias for self-attention to encourage attention to close positions. Args: length: an integer scalar. Returns: a Tensor with shape [1, 1, length, length] """ r = paddle.arange(length, dtype=np.float32) diff = paddle.unsqueeze(r, 0) - paddle.unsqueeze(r, 1) return paddle.unsqueeze(paddle.unsqueeze(-paddle.log1p(paddle.abs(diff)), 0), 0) class FFN(nn.Layer): def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.activation = activation self.causal = causal if causal: self.padding = self._causal_padding else: self.padding = self._same_padding self.conv_1 = nn.Conv1D(in_channels, filter_channels, kernel_size) self.conv_2 = nn.Conv1D(filter_channels, out_channels, kernel_size) self.drop = nn.Dropout(p_dropout) def forward(self, x, x_mask): x = x * x_mask x = self.padding(x) x = self.conv_1(x) if self.activation == "gelu": x = x * F.sigmoid(1.702 * x) else: x = F.relu(x) x = self.drop(x) x = x * x_mask x = self.padding(x) x = self.conv_2(x) return x * x_mask def _causal_padding(self, x): if self.kernel_size == 1: return x pad_l = self.kernel_size - 1 pad_r = 0 padding = [[0, 0], [0, 0], [pad_l, pad_r]] pad_shape:list = commons.convert_pad_shape(padding) pad_shape = commons.fix_pad_shape(pad_shape, x) x = F.pad(x, pad_shape,data_format='NCL') return x def _same_padding(self, x): if self.kernel_size == 1: return x pad_l = (self.kernel_size - 1) // 2 pad_r = self.kernel_size // 2 padding = [[0, 0], [0, 0], [pad_l, pad_r]] pad_shape = commons.convert_pad_shape(padding) pad_shape = commons.fix_pad_shape(pad_shape, x) x = F.pad(x, pad_shape, data_format='NCL') return x