import copy import math import numpy as np import scipy import paddle from paddle import nn from paddle.nn import functional as F from paddle.nn import Conv1D, Conv1DTranspose, AvgPool1D, Conv2D from paddle.nn.utils import weight_norm, remove_weight_norm import modules.commons as commons from modules.commons import init_weights, get_padding LRELU_SLOPE = 0.1 class LayerNorm(nn.Layer): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = paddle.create_parameter([channels],'float32','modules_Layer_Norm_gamma',\ paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=1.0))) # ones,shape = [channels] self.beta = paddle.create_parameter([channels],'float32','modules_Layer_Norm_beta',\ paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0))) # zeros,shape = [channels] def forward(self, x): x = x.transpose([0,2,1])#x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose([0,2,1])#x.transpose(1, -1) class ConvReluNorm(nn.Layer): def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout assert n_layers > 1, "Number of layers should be larger than 0." self.conv_layers = nn.LayerList() self.norm_layers = nn.LayerList() self.conv_layers.append(nn.Conv1D(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = nn.Sequential( nn.ReLU(), nn.Dropout(p_dropout)) for _ in range(n_layers-1): self.conv_layers.append(nn.Conv1D(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) self.norm_layers.append(LayerNorm(hidden_channels)) att = paddle.ParamAttr('modules_ConvReluNorm_att',initializer = paddle.nn.initializer.Constant(value=0.0)) # น้มใ self.proj = nn.Conv1D(hidden_channels, out_channels, 1, weight_attr=att, bias_attr=att) #self.proj.weight.data.zero_() #self.proj.bias.data.zero_() def forward(self, x, x_mask): x_org = x for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x) x = self.relu_drop(x) x = x_org + self.proj(x) return x * x_mask class DDSConv(nn.Layer): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.LayerList() self.convs_1x1 = nn.LayerList() self.norms_1 = nn.LayerList() self.norms_2 = nn.LayerList() for i in range(n_layers): dilation = kernel_size ** i padding = (kernel_size * dilation - dilation) // 2 self.convs_sep.append(nn.Conv1D(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding )) self.convs_1x1.append(nn.Conv1D(channels, channels, 1)) self.norms_1.append(LayerNorm(channels)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = self.norms_1[i](y) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask class WN(paddle.nn.Layer): def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): super(WN, self).__init__() assert(kernel_size % 2 == 1) self.hidden_channels =hidden_channels self.kernel_size = kernel_size, self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = paddle.nn.LayerList() self.res_skip_layers = paddle.nn.LayerList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = paddle.nn.Conv1D(gin_channels, 2*hidden_channels*n_layers, 1) self.cond_layer = paddle.nn.utils.weight_norm(cond_layer, name='weight') for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = paddle.nn.Conv1D(hidden_channels, 2*hidden_channels, kernel_size, dilation=dilation, padding=padding) in_layer = paddle.nn.utils.weight_norm(in_layer, name='weight') self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = paddle.nn.Conv1D(hidden_channels, res_skip_channels, 1) res_skip_layer = paddle.nn.utils.weight_norm(res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): output = paddle.zeros_like(x,name = 'module_WN_forward_output') if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] else: g_l = paddle.zeros_like(x_in,name = 'module_WN_forward_gl') input_a=x_in; input_b=g_l n_channels_int = self.hidden_channels in_act = input_a + input_b t_act = paddle.tanh(in_act[:, :n_channels_int, :]) s_act = paddle.nn.functional.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:,:self.hidden_channels,:] x = (x + res_acts) * x_mask output = output + res_skip_acts[:,self.hidden_channels:,:] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: paddle.nn.utils.remove_weight_norm(self.cond_layer) for l in self.in_layers: paddle.nn.utils.remove_weight_norm(l) for l in self.res_skip_layers: paddle.nn.utils.remove_weight_norm(l) class ResBlock1(paddle.nn.Layer): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.convs1 = nn.LayerList([ weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.LayerList([ weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) def forward(self, x, x_mask=None): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c2(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(paddle.nn.Layer): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.convs = nn.LayerList([ weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) self.convs.apply(init_weights) def forward(self, x, x_mask=None): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Log(nn.Layer): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = paddle.log(paddle.clip(x, 1e-5)) * x_mask logdet = paddle.sum(-y, [1, 2]) return y, logdet else: x = paddle.exp(x) * x_mask return x class Flip(nn.Layer): def forward(self, x, *args, reverse=False, **kwargs): x = paddle.flip(x, [1]) if not reverse: logdet = paddle.zeros([x.shape[0]]).astype(x.dtype) return x, logdet else: return x class ElementwiseAffine(nn.Layer): def __init__(self, channels): super().__init__() self.channels = channels self.m = paddle.create_parameter([channels,1],'float32',None,\ paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0))) self.logs = paddle.create_parameter([channels,1],'float32',None,\ paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0))) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + paddle.exp(self.logs) * x y = y * x_mask logdet = paddle.sum(self.logs * x_mask, [1,2]) return y, logdet else: x = (x - self.m) * paddle.exp(-self.logs) * x_mask return x class ResidualCouplingLayer(nn.Layer): def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1D(self.half_channels, hidden_channels, 1) self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) att = paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0)) # น้มใ self.post = nn.Conv1D(hidden_channels, self.half_channels * (2 - mean_only), 1,weight_attr=att, bias_attr=att) #self.post.weight.data.zero_() #self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = paddle.split(x, [self.half_channels]*2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = paddle.split(stats, [self.half_channels]*2, 1) else: m = stats logs = paddle.zeros_like(m) if not reverse: x1 = m + x1 * paddle.exp(logs) * x_mask x = paddle.concat([x0, x1], 1) logdet = paddle.sum(logs, [1,2]) return x, logdet else: x1 = (x1 - m) * paddle.exp(-logs) * x_mask x = paddle.concat([x0, x1], 1) return x