import logging import multiprocessing import time logging.getLogger('matplotlib').setLevel(logging.WARNING) import os import paddle #paddle.device.set_device("cpu") #开启可用CPU进行炼丹 trainer:str = "admin" from paddle.nn import functional as F from paddle.io import DataLoader from visualdl import LogWriter from paddle.amp import auto_cast, GradScaler import modules.commons as commons import utils from data_utils import TextAudioSpeakerLoader, TextAudioCollate from models import ( SynthesizerTrn, MultiPeriodDiscriminator, ) from modules.losses import ( kl_loss, generator_loss, discriminator_loss, feature_loss ) from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch paddle.set_flags({'FLAGS_cudnn_exhaustive_search': True}) # 使用穷举搜索方法来选择卷积算法 global_step = 0 trainers:list[str] = [] start_time = time.time() def main(): """Assume Single Node Multi GPUs Training Only""" #assert torch.cuda.is_available(), "CPU training is not allowed." hps = utils.get_hparams() n_gpus = paddle.device.cuda.device_count() os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = hps.train.port run(n_gpus, hps, ) def run(n_gpus, hps): global global_step,trainers,trainer trainer = hps.trainer rank = 0 if rank == 0: logger = utils.get_logger(hps.model_dir) logger.info(hps) utils.check_git_hash(hps.model_dir) writer = LogWriter(logdir=hps.model_dir) writer_eval = LogWriter(logdir=os.path.join(hps.model_dir, "eval")) paddle.seed(hps.train.seed) paddle.device.set_device('cpu' if paddle.device.get_device() == 'cpu' else 'gpu:' + str(rank)) collate_fn = TextAudioCollate() train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps) num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count() train_loader = DataLoader(dataset = train_dataset, num_workers=num_workers, shuffle=False, batch_size=hps.train.batch_size, collate_fn=collate_fn) if rank == 0: eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps) eval_loader = DataLoader(dataset = eval_dataset, num_workers = 1, shuffle = False, batch_size = 1, drop_last = False, collate_fn = collate_fn) net_g = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm) optim_g = paddle.optimizer.AdamW( parameters = net_g.parameters(), learning_rate = hps.train.learning_rate, beta1 = hps.train.betas[0], beta2 = hps.train.betas[1], epsilon = hps.train.eps) optim_d = paddle.optimizer.AdamW( parameters = net_d.parameters(), learning_rate = hps.train.learning_rate, beta1 = hps.train.betas[0], beta2 = hps.train.betas[1], epsilon = hps.train.eps) skip_optimizer = False try: _, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pdparams"), net_g, optim_g, skip_optimizer) _, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pdparams"), net_d, optim_d, skip_optimizer) if trainer not in trainers: trainers.append(trainer) epoch_str = max(epoch_str, 1) global_step = (epoch_str - 1) * len(train_loader) except Exception as e: print(e) logger.info("加载旧检查点失败……") epoch_str = 1 global_step = 0 if skip_optimizer: epoch_str = 1 global_step = 0 scheduler_g = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2) scheduler_d = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2) optim_g = paddle.optimizer.AdamW( parameters = net_g.parameters(), learning_rate = scheduler_g, beta1 = hps.train.betas[0], beta2 = hps.train.betas[1], epsilon = hps.train.eps) optim_d = paddle.optimizer.AdamW( parameters = net_d.parameters(), learning_rate = scheduler_d, beta1 = hps.train.betas[0], beta2 = hps.train.betas[1], epsilon = hps.train.eps) scaler = GradScaler(enable = hps.train.fp16_run) for epoch in range(epoch_str, hps.train.epochs + 1): if rank == 0: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) else: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None) scheduler_g.step() scheduler_d.step() def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler:GradScaler, loaders, logger:logging.Logger, writers:list or None): net_g, net_d = nets optim_g, optim_d = optims scheduler_g, scheduler_d = schedulers train_loader, eval_loader = loaders if writers is not None: writer, writer_eval = writers # train_loader.batch_sampler.set_epoch(epoch) global global_step net_g.train() net_d.train() for batch_idx, items in enumerate(train_loader): c, f0, spec, y, spk, lengths, uv = items g = spk mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) with auto_cast(enable=hps.train.fp16_run): y_hat, ids_slice, z_mask, \ (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths, spec_lengths=lengths) y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice # Discriminator y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) with auto_cast(enable=False): loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) loss_disc_all = loss_disc optim_d.clear_grad() scaler.scale(loss_disc_all).backward(retain_graph = True) # 将 Tensor 乘上缩放因子,返回缩放后的输出,返回loss然后反向传播 scaler.unscale_(optim_d) # 将参数的梯度除去缩放比例。 grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) scaler.step(optim_d) with auto_cast(enable=hps.train.fp16_run): # Generator y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) with auto_cast(enable=False): loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl loss_fm = feature_loss(fmap_r, fmap_g) loss_gen, losses_gen = generator_loss(y_d_hat_g) loss_lf0 = F.mse_loss(pred_lf0, lf0) loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0 optim_g.clear_grad() scaler.scale(loss_gen_all).backward(retain_graph = True) scaler.unscale_(optim_g) grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) scaler.step(optim_g) scaler.update() #lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典 #losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] #logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}") # 梅花自己看的~ if rank == 0: if global_step % hps.train.log_interval == 0: lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典 losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] logger.info('训练回合:{} [{:.0f}%]'.format( epoch, 100. * batch_idx / len(train_loader))) logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}") scalar_dict = {"损失/生成器/总损失": loss_gen_all, "损失/判别器/总损失": loss_disc_all, "学习率": lr, "归一化判别器梯度": grad_norm_d, "归一化生成器梯度": grad_norm_g} scalar_dict.update({"损失/生成器/特征匹配损失": loss_fm, "损失/生成器/梅尔频谱损失": loss_mel, "损失/生成器/KL散度": loss_kl, "损失/生成器/基音损失": loss_lf0}) image_dict = { "切片/原始梅尔频谱图": utils.plot_spectrogram_to_numpy(y_mel[0].detach().numpy()), "切片/生成梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].detach().numpy()), "全部/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].detach().numpy()), "全部/基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(), pred_lf0[0, 0, :].detach().numpy()), "全部/归一化基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(), norm_lf0[0, 0, :].detach().numpy()) } utils.summarize( writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict ) if global_step % hps.train.eval_interval == 0: if hps.clean_logs: os.system('clear') evaluate(hps, net_g, eval_loader, writer_eval) utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pdparams".format(global_step)), trainers) utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pdparams".format(global_step)), trainers) keep_ckpts = getattr(hps.train, 'keep_ckpts', 0) if keep_ckpts > 0: utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True) global_step += 1 if rank == 0: global start_time now = time.time() durtaion = format(now - start_time, '.2f') logger.info(f'====> 回合:{epoch}, 消耗 {durtaion} 秒') start_time = now def evaluate(hps, generator, eval_loader, writer_eval): generator.eval() image_dict = {} audio_dict = {} with paddle.no_grad(): for batch_idx, items in enumerate(eval_loader): c, f0, spec, y, spk, _, uv = items g = spk[:1] spec, y = spec[:1], y[:1] c = c[:1] f0 = f0[:1] uv= uv[:1] mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) y_hat = generator.infer(c, f0, uv, g=g) y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1).cast('float32'), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) audio_dict.update({ f"生成器测试数据/音频_{batch_idx}": y_hat[0], f"地标真实数据/音频_{batch_idx}": y[0] }) image_dict.update({ "生成器测试数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].numpy()), "地标真实数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].numpy()) }) utils.summarize( writer=writer_eval, global_step=global_step, images=image_dict, audios=audio_dict, audio_sampling_rate=hps.data.sampling_rate ) generator.train() if __name__ == "__main__": main()