import numpy as np import paddle from sklearn.cluster import KMeans def get_cluster_model(ckpt_path:str): checkpoint = paddle.load(ckpt_path) kmeans_dict = {} for spk, ckpt in checkpoint.items(): km = KMeans(ckpt["n_features_in_"]) km.__dict__["n_features_in_"] = ckpt["n_features_in_"] km.__dict__["_n_threads"] = ckpt["_n_threads"] km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"] kmeans_dict[spk] = km return kmeans_dict def get_cluster_result(model, x, speaker): """ x: np.array [t, 256] return cluster class result """ return model[speaker].predict(x) def get_cluster_center_result(model, x,speaker): """x: np.array [t, 256]""" predict = model[speaker].predict(x) return model[speaker].cluster_centers_[predict] def get_center(model, x,speaker): return model[speaker].cluster_centers_[x]