import math import os import random import paddle from paddle import nn import paddle.nn.functional as F import numpy as np import librosa import librosa.util as librosa_util from librosa.util import normalize, pad_center, tiny from scipy.signal import get_window from scipy.io.wavfile import read from librosa.filters import mel as librosa_mel_fn MAX_WAV_VALUE = 32768.0 def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return paddle.log(paddle.clip(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return paddle.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output mel_basis = {} hann_window = {} def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): if paddle.min(y) < -1.: print('min value is ', paddle.min(y)) if paddle.max(y) > 1.: print('max value is ', paddle.max(y)) global hann_window dtype_device = str(y.dtype) + '_' + str(str(y.place)[6:-1]) wnsize_dtype_device = str(win_size) + '_' + dtype_device if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = paddle.audio.functional.get_window('hann',win_size).astype(y.dtype) y = paddle.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect', data_format='NCL') y = y.squeeze(1) spec = paddle.signal.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True) spec = paddle.as_real(spec) spec = paddle.sqrt(spec.pow(2).sum(-1) + 1e-6) return spec def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): global mel_basis dtype_device = str(spec.dtype) + '_' + str(spec.place)[6:-1] fmax_dtype_device = str(fmax) + '_' + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) mel_basis[fmax_dtype_device] = paddle.to_tensor(mel).astype(spec.dtype) spec = paddle.matmul(mel_basis[fmax_dtype_device], spec) spec = spectral_normalize_torch(spec) return spec def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if paddle.min(y) < -1.: print('min value is ', paddle.min(y)) if paddle.max(y) > 1.: print('max value is ', paddle.max(y)) global mel_basis, hann_window dtype_device = str(y.dtype) + '_' + str(y.place)[6:-1] fmax_dtype_device = str(fmax) + '_' + dtype_device wnsize_dtype_device = str(win_size) + '_' + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) mel_basis[fmax_dtype_device] = paddle.to_tensor(mel).astype(y.dtype) if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = paddle.audio.functional.get_window('hann',win_size).astype(y.dtype) y = paddle.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect',data_format = 'NCL') y = y.squeeze(1) spec = paddle.signal.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True) spec = paddle.as_real(spec) spec = paddle.sqrt(spec.pow(2).sum(-1) + 1e-6) spec = paddle.matmul(mel_basis[fmax_dtype_device], spec) spec = spectral_normalize_torch(spec) return spec