Spaces:
Paused
Paused
File size: 19,996 Bytes
5bb6ad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
import torch
import wandb
import torch.optim as optim
import os
from config import ModelArgs
from model import Llama
from inference import greedy_decode
from data import prepare_dataset
from tokenizer import Tokenizer
torch.set_float32_matmul_precision('high')
scaler = torch.amp.GradScaler(enabled=(ModelArgs.dtype == 'float16'))
save_chechpoint_iter = 50
total_iters = 10000
eval_iters = 50
eval_check = 100
warmup_iters = 700
min_lr = 0.1 * ModelArgs.max_lr
lr_decay_iters = 10000
total_batch_size = 524288
micro_batch_size = ModelArgs.batch_size
gradient_accumulation_steps = total_batch_size // (micro_batch_size * (ModelArgs.block_size * torch.cuda.device_count()))
class Trainer:
def __init__(self, model_args):
def setup(rank=None, world_size=None):
# os.environ['MASTER_ADDR'] = 'localhost'
# os.environ['MASTER_PORT'] = '12355'
init_process_group("nccl")
# torch.cuda.set_device(int(os.environ['LOCAL_RANK']))
self.model_args = model_args
self.tokenizer = Tokenizer().ready_tokenizer()
setup()
def cleanup(self):
destroy_process_group()
def _save_snapshot(self, model, optimizer, epoch, step, save_dir):
snapshot = {}
snapshot["MODEL_STATE"] = model.module.state_dict()
snapshot["OPTIMIZER_STATE"]= optimizer.state_dict()
snapshot["EPOCHS_RUN"] = epoch
snapshot["STEP_RUN"] = step
torch.save(snapshot, os.path.join(save_dir, "snapshot.pt"))
print(f"Epoch: {epoch} | step {step} | Training snapshot saved at snapshot.pt")
# Warmup phase for 2000 steps
def warmup_fn(step):
if step < 2000:
return step / 2000 # LR gradually increases
return 1.0
# learning rate decay scheduler (cosine with warmup) from https://github.com/karpathy/nanoGPT/blob/master/train.py
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return ModelArgs.max_lr * (it + 1) / (warmup_iters + 1)
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (ModelArgs.max_lr - min_lr)
def train():
setup()
device = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(int(device))
print(f"Start running DDP on rank {device}.")
if(device == 0):
# # Initialise run
wandb.init(
# entity = 'rajceo2031',
project = 'Llama-DDP-Pretrain-10-billion-tokens',
# config = CFG,
# save_code = True,
#group = 'ANN',
#job_type = 'train'
)
print("wand initialized")
model = Llama(embeddings_dims=ModelArgs.embeddings_dims, block_size=ModelArgs.block_size, vocab_size=ModelArgs.vocab_size, dropout=ModelArgs.dropout, device=device)
# print(f"Model on device {device} is ready")
print(f"Model on device {device} is ready")
optimizer = optim.AdamW(model.parameters(), lr=ModelArgs.max_lr, betas=(ModelArgs.beta_1, ModelArgs.beta_2), weight_decay=ModelArgs.weight_decay_optim, eps=ModelArgs.eps)
# model = torch.compile(model)
model = model.to(device)
model = DDP(model, device_ids=[device])
model.eval()
world_size = torch.cuda.device_count()
@torch.inference_mode()
def estimate_loss(val_loader, val_iterator, device):
out = {}
loader = None
epoch_loss = None
epoch_losses = []
for split in ['val']:
print(f"Starting with {split} evaluation...")
for step in range(eval_check):
try:
batch = next(val_iterator)
except StopIteration:
val_loader_iterator = iter(val_loader)
batch = next(val_loader_iterator)
total_loss = 0
total_batches = 0
idx = batch['input_ids']
targets = batch['labels']
idx = idx.to(device)
targets = targets.to(device)
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits = model(idx)
batch_size, block_size, embeddings_dims = logits.shape
logits = logits.view(batch_size * block_size, embeddings_dims)
targets = targets.view(batch_size * block_size)
loss = F.cross_entropy(logits, targets, ignore_index=tokenizer.pad_token_id)
total_loss += loss.item()
total_batches += 1
epoch_loss = total_loss / total_batches if total_batches > 0 else 0.0
epoch_losses.append(epoch_loss)
out[split] = sum(epoch_losses) / len(epoch_losses) if epoch_losses else 0.0
epoch_loss = None
epoch_losses = []
model.train()
return out
model.train()
count = 0
train_dataloader = prepare_dataset('train', device, ModelArgs.batch_size)
val_loader= prepare_dataset('val', device, ModelArgs.batch_size)
print("Loaders ready both")
epochs = ModelArgs.epochs
train_loader_length = 0
train_data_iterator = iter(train_dataloader)
val_data_iterator = iter(val_loader)
token_count = 0
if(device == 0):
train_loader_length = len(train_dataloader)
for step in tqdm(range(total_iters)):
if(device == 0):
print("Step : ", step, "/", total_iters)
print('Total batches: ', len(train_dataloader))
print("Total gradient accumulation steps: ", gradient_accumulation_steps)
print("Total tokens processed: ", token_count)
if (step % eval_iters == 0 and step != 0) or step == total_iters - 1:
losses = estimate_loss( val_loader, val_data_iterator, 'cuda')
# avg_train_loss = losses['train']
avg_val_loss = losses['val']
print(f"[GPU {device}] | Step: {step} / {total_iters} | Val Loss: {losses['val']:.4f}")
avg_val_loss = torch.Tensor([losses['val']]).to(device)
# torch.distributed.reduce(avg_train_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
torch.distributed.reduce(avg_val_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
if device == 0:
all_gpus_avg_val_loss = avg_val_loss / world_size
print(f"All_GPUs_Val_losses: {all_gpus_avg_val_loss.item():.4f}")
wandb.log({
# "Learning Rate": optimizer.param_groups[0]['lr'],
# "All_GPUs_Train_losses": all_gpus_avg_train_loss,
"All_GPUs_Val_losses": all_gpus_avg_val_loss,
# "training_step_loss": losses['train'],
"val_step_loss": losses['val'],
# "Step": step,
# "Epoch": epoch
})
if step % save_chechpoint_iter == 0 and device == 0 and step != 0:
print(f"Saving the model checkpoint for step: {step}")
_save_snapshot(model, optimizer, None, None, step)
accumulated_loss = 0.0
optimizer.zero_grad(set_to_none=True)
for micro_step in range(gradient_accumulation_steps):
try:
batch = next(train_data_iterator)
except StopIteration:
train_data_iterator = iter(train_dataloader)
batch = next(train_data_iterator)
# print(batch)
# batch = next(train_data_iterator)
# print(batch)
# batch = {k: v.to(self.local_rank) for k, v in batch.items()}
idx = batch['input_ids'].to(device)
# idx, targets = get_batch(split='train')
# print(f"Starting the train step: {step}...")
# for idx, targets in train_loader:
# idx, targets = next(iter(train_loader))
# print("Idx: ", idx)
# print("Targets: ", targets)
# idx = idx.to(device)
# print("Idx: ", idx)
# print("Targets: ", targets)
targets = batch['labels'].to(device)
token_count += len(idx)
with torch.autocast(device_type=ModelArgs.device, dtype=torch.bfloat16):
logits = model(idx)
batch_size, block_size, embeddings_dims = logits.shape
# print(logits.shape)
# print(targets)
logits = logits.view(batch_size*block_size, embeddings_dims)
# print("OK")
targets = targets.view(batch_size * block_size)
# print("OK2")
loss = nn.functional.cross_entropy(logits, targets, ignore_index=tokenizer.pad_token_id)
loss = loss / gradient_accumulation_steps #IDK why div is done here specifically? Maybe think of it in terms of a very big batch being processed and there is need for equal important of each mini batch for the overall big batch
accumulated_loss += loss.detach()
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1) # so that we dont synchronize the gradient everytime across the GPU devices
scaler.scale(loss).backward()
# Check for unused parameters
unused_params = find_unused_parameters(model)
if unused_params:
print(f"Unused parameters: {unused_params}")
# break
if(device == 0):
if(micro_step % 10 == 0):
# if(step == train_loader_length):
# break
print("Micro Batch : ", micro_step)
print("Step : ", step, "/", total_iters)
print('Total batches: ', len(train_dataloader))
print("Total gradient accumulation steps: ", gradient_accumulation_steps)
print("Total tokens processed: ", token_count)
# count += 1
lr = get_lr(step)
for params in optimizer.param_groups:
params['lr'] = lr
# Compute gradient norms before clipping
if(ModelArgs.clip != 0.0):
scaler.unscale_(optimizer) #To avoid underflow
total_norm_before = torch.norm(
torch.stack([torch.norm(p.grad.detach(), 2) for p in model.parameters()]), 2
)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=ModelArgs.clip)
# Compute gradient norms after clipping
total_norm_after = torch.norm(
torch.stack([torch.norm(p.grad.detach(), 2) for p in model.parameters()]), 2
)
if(device == 0 and step !=0):
print(f"Gradient Norm Before Clipping: {total_norm_before.item():.4f}")
print(f"Gradient Norm After Clipping: {total_norm_after.item():.4f}")
scaler.step(optimizer)
scaler.update()
# optimizer.step()
# new_scheduler.step()
torch.cuda.synchronize()
torch.distributed.reduce(loss, dst=0, op=torch.distributed.ReduceOp.SUM)
if(device == 0):
wandb.log({
"Learning Rate": lr,
"All_GPUs_Train_losses": accumulated_loss.item(),
# "All_GPUs_Val_losses": all_gpus_avg_val_loss,
# "training_step_loss": losses['train'],
# "val_step_loss": losses['val'],
"Step": step,
# "Epoch": epoch
})
# print(loss.item())
# break
if device == 0 and step % 5 == 0:
count = 3
while(count): # Only generate text on the main process
prompt = "Once upon a time"
generated_text = topk_sampling(model, prompt, max_length=50, top_k=50, temperature=1.0, device=device)
print(f" Step: {step} | Generated Text: {generated_text}")
count -= 1
if device == 0:
wandb.finish()
cleanup()
world_size = torch.cuda.device_count()
print(f"World size: {world_size}")
def parse_args():
parser = argparse.ArgumentParser(description="Model Training Arguments")
# Add arguments for each field in ModelArgs
parser.add_argument("--epochs", type=int, default=ModelArgs.epochs, help="Number of training epochs.")
parser.add_argument("--block_size", type=int, default=ModelArgs.block_size, help="Block size for the model.")
parser.add_argument("--batch_size", type=int, default=ModelArgs.batch_size, help="Batch size for training.")
# parser.add_argument("--inference", type=lambda x: (str(x).lower() == 'true'), default=ModelArgs.inference, help="Whether to run in inference mode.")
parser.add_argument("--embeddings_dims", type=int, default=ModelArgs.embeddings_dims, help="Embedding dimensions.")
parser.add_argument("--attn_dropout", type=float, default=ModelArgs.attn_dropout, help="Attention dropout rate.")
parser.add_argument("--no_of_heads", type=int, default=ModelArgs.no_of_heads, help="Number of attention heads.")
parser.add_argument("--dropout", type=float, default=ModelArgs.dropout, help="Dropout rate.")
parser.add_argument("--val_epochs", type=int, default=ModelArgs.val_epochs, help="Number of validation epochs.")
parser.add_argument("--max_lr", type=float, default=ModelArgs.max_lr, help="Learning rate.")
parser.add_argument("--no_of_decoder_layers", type=int, default=ModelArgs.no_of_decoder_layers, help="Number of decoder layers.")
parser.add_argument("--weight_decay_optim", type=float, default=ModelArgs.weight_decay_optim, help="Weight decay for optimizer.")
parser.add_argument("--beta_1", type=float, default=ModelArgs.beta_1, help="Beta1 for Adam optimizer.")
parser.add_argument("--beta_2", type=float, default=ModelArgs.beta_2, help="Beta2 for Adam optimizer.")
parser.add_argument("--clip", type=float, default=ModelArgs.clip, help="Gradient clipping value.")
parser.add_argument("--device", type=str, default=ModelArgs.device, help="Device to run the model on (e.g., 'cuda' or 'cpu').")
parser.add_argument("--no_kv_heads", type=int, default=ModelArgs.no_kv_heads, help="Number of key/value heads.")
parser.add_argument("--vocab_size", type=int, default=ModelArgs.vocab_size, help="Vocabulary size.")
parser.add_argument("--eps", type=float, default=ModelArgs.eps, help="Epsilon value for numerical stability.")
parser.add_argument("--dtype", type=str, default=ModelArgs.dtype, help="Data type for tensors (e.g., 'float16' or 'bfloat16').")
parser.add_argument("--save_checkpoint_dir", type=str, default=ModelArgs.save_checkpoint_dir, help="Directory to save model checkpoints.")
parser.add_argument("--prompt", type=str, default=ModelArgs.prompt, help="Prompt for testing during training.")
# Additional arguments
parser.add_argument("--save_checkpoint_iter", type=int, default=ModelArgs.save_checkpoint_iter, help="Save checkpoint every N iterations.")
parser.add_argument("--total_iters", type=int, default=ModelArgs.total_iters, help="Total number of training iterations.")
parser.add_argument("--eval_iters", type=int, default=ModelArgs.eval_iters, help="Number of iterations for evaluation.")
parser.add_argument("--eval_check", type=int, default=ModelArgs.eval_check, help="Evaluate model every N iterations.")
parser.add_argument("--warmup_iters", type=int, default=ModelArgs.warmup_iters, help="Number of warmup iterations for learning rate scheduling.")
parser.add_argument("--min_lr", type=float, default=ModelArgs.min_lr, help="Minimum learning rate.")
parser.add_argument("--lr_decay_iters", type=int, default=ModelArgs.lr_decay_iters, help="Number of iterations for learning rate decay.")
parser.add_argument("--total_batch_size", type=int, default=ModelArgs.total_batch_size, help="Total batch size across all devices.")
parser.add_argument("--micro_batch_size", type=int, default=ModelArgs.micro_batch_size, help="Micro batch size per device.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=ModelArgs.gradient_accumulation_steps, help="Number of gradient accumulation steps.")
args = parser.parse_args()
return args
def initialize_model_args(args):
# Create a ModelArgs instance from the parsed arguments
model_args = ModelArgs(
epochs=args.epochs,
block_size=args.block_size,
batch_size=args.batch_size,
# inference=args.inference,
embeddings_dims=args.embeddings_dims,
attn_dropout=args.attn_dropout,
no_of_heads=args.no_of_heads,
dropout=args.dropout,
val_epochs=args.val_epochs,
max_lr=args.max_lr,
no_of_decoder_layers=args.no_of_decoder_layers,
weight_decay_optim=args.weight_decay_optim,
beta_1=args.beta_1,
beta_2=args.beta_2,
clip=args.clip,
device=args.device,
no_kv_heads=args.no_kv_heads,
vocab_size=args.vocab_size,
eps=args.eps,
dtype=args.dtype,
save_checkpoint_dir=args.save_checkpoint_dir,
prompt=args.prompt,
save_checkpoint_iter=args.save_checkpoint_iter,
total_iters=args.total_iters,
eval_iters=args.eval_iters,
eval_check=args.eval_check,
warmup_iters=args.warmup_iters,
min_lr=args.min_lr,
lr_decay_iters=args.lr_decay_iters,
total_batch_size=args.total_batch_size,
micro_batch_size=args.micro_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps
)
return model_args
if __name__ == "__main__":
args = parse_args()
model_args = initialize_model_args(args)
|