File size: 19,996 Bytes
5bb6ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
import torch

import wandb


import torch.optim as optim


import os
from config import ModelArgs
from model import Llama

from inference import greedy_decode
from data import prepare_dataset
from tokenizer import Tokenizer


torch.set_float32_matmul_precision('high')

scaler = torch.amp.GradScaler(enabled=(ModelArgs.dtype == 'float16'))



save_chechpoint_iter = 50
total_iters = 10000
eval_iters = 50
eval_check = 100
warmup_iters = 700
min_lr = 0.1 * ModelArgs.max_lr
lr_decay_iters = 10000
total_batch_size = 524288
micro_batch_size = ModelArgs.batch_size
gradient_accumulation_steps = total_batch_size // (micro_batch_size * (ModelArgs.block_size * torch.cuda.device_count()))



class Trainer:
    
    def __init__(self, model_args):


        def setup(rank=None, world_size=None):
            # os.environ['MASTER_ADDR'] = 'localhost'
            # os.environ['MASTER_PORT'] = '12355'
            init_process_group("nccl")
            # torch.cuda.set_device(int(os.environ['LOCAL_RANK']))
            
        self.model_args = model_args  
        self.tokenizer = Tokenizer().ready_tokenizer()
        setup()
        
    def cleanup(self):
        destroy_process_group()

    def _save_snapshot(self, model, optimizer, epoch, step, save_dir):
        snapshot = {}
        snapshot["MODEL_STATE"] = model.module.state_dict()
        snapshot["OPTIMIZER_STATE"]= optimizer.state_dict()
        snapshot["EPOCHS_RUN"] = epoch
        snapshot["STEP_RUN"] = step
        torch.save(snapshot, os.path.join(save_dir, "snapshot.pt"))
        print(f"Epoch: {epoch} | step {step} | Training snapshot saved at snapshot.pt")

    # Warmup phase for 2000 steps
    def warmup_fn(step):
        if step < 2000:
            return step / 2000  # LR gradually increases
        return 1.0


    # learning rate decay scheduler (cosine with warmup) from https://github.com/karpathy/nanoGPT/blob/master/train.py

    def get_lr(it):
        # 1) linear warmup for warmup_iters steps
        if it < warmup_iters:
            return ModelArgs.max_lr * (it + 1) / (warmup_iters + 1)
        # 2) if it > lr_decay_iters, return min learning rate
        if it > lr_decay_iters:
            return min_lr
        # 3) in between, use cosine decay down to min learning rate
        decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
        assert 0 <= decay_ratio <= 1
        coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) 
        return min_lr + coeff * (ModelArgs.max_lr - min_lr)


    def train():

        setup()
        device = int(os.environ["LOCAL_RANK"])

        torch.cuda.set_device(int(device))

        print(f"Start running DDP on rank {device}.")

        if(device == 0):

        
        
    #         # Initialise run
            wandb.init(
                # entity = 'rajceo2031',
                            project = 'Llama-DDP-Pretrain-10-billion-tokens',
                            # config = CFG,
                            # save_code = True,
                            #group = 'ANN',
                            #job_type = 'train'
    )
        print("wand initialized")
        
        model = Llama(embeddings_dims=ModelArgs.embeddings_dims, block_size=ModelArgs.block_size, vocab_size=ModelArgs.vocab_size, dropout=ModelArgs.dropout, device=device)
        
        # print(f"Model on device {device} is ready")
        print(f"Model on device {device} is ready")
        
     
        optimizer = optim.AdamW(model.parameters(), lr=ModelArgs.max_lr, betas=(ModelArgs.beta_1, ModelArgs.beta_2), weight_decay=ModelArgs.weight_decay_optim, eps=ModelArgs.eps)
        
        # model = torch.compile(model)
        model = model.to(device)
        
        model = DDP(model, device_ids=[device])
        

        
        
        
        model.eval()
        world_size = torch.cuda.device_count()
        @torch.inference_mode()
        def estimate_loss(val_loader, val_iterator, device):
            out = {}
  
            loader = None
            epoch_loss = None
            epoch_losses = []
         
            for split in ['val']:
                print(f"Starting with {split} evaluation...")
              
                for step in range(eval_check):  
                    try:
                        batch = next(val_iterator)
                    except StopIteration:
                        val_loader_iterator = iter(val_loader)
                        batch = next(val_loader_iterator)
                    
                    total_loss = 0  
                    
                    total_batches = 0 
          
                    idx = batch['input_ids']
                    targets = batch['labels']
                    idx = idx.to(device)
                    targets = targets.to(device)
                    with torch.autocast(device_type=device, dtype=torch.bfloat16):
                        
                        logits = model(idx)
                        batch_size, block_size, embeddings_dims = logits.shape
                        logits = logits.view(batch_size * block_size, embeddings_dims) 
                        targets = targets.view(batch_size * block_size)

                        loss = F.cross_entropy(logits, targets, ignore_index=tokenizer.pad_token_id)

                        total_loss += loss.item()
                        total_batches += 1

             
                epoch_loss = total_loss / total_batches if total_batches > 0 else 0.0
                epoch_losses.append(epoch_loss)

                  
                out[split] = sum(epoch_losses) / len(epoch_losses) if epoch_losses else 0.0
                epoch_loss = None
                epoch_losses = []

            model.train()
            return out

      
        model.train()
        count = 0
    
        train_dataloader = prepare_dataset('train', device, ModelArgs.batch_size)
        val_loader= prepare_dataset('val', device, ModelArgs.batch_size)
      
        print("Loaders ready both")
        epochs = ModelArgs.epochs

        train_loader_length = 0
        train_data_iterator = iter(train_dataloader)
        val_data_iterator = iter(val_loader)
        token_count = 0
        if(device == 0):
            train_loader_length = len(train_dataloader)
      
        for step in tqdm(range(total_iters)):
           
            
            if(device == 0):

                    print("Step : ", step, "/", total_iters)
                    print('Total batches: ', len(train_dataloader))
                    print("Total gradient accumulation steps: ", gradient_accumulation_steps)
                    print("Total tokens processed: ", token_count)
                    
          
            if (step  % eval_iters == 0 and step != 0) or step == total_iters - 1:
                losses = estimate_loss( val_loader, val_data_iterator, 'cuda')
                # avg_train_loss = losses['train']
                avg_val_loss = losses['val']
      
                print(f"[GPU {device}] | Step: {step} / {total_iters} | Val Loss: {losses['val']:.4f}")
              
                avg_val_loss = torch.Tensor([losses['val']]).to(device)
                # torch.distributed.reduce(avg_train_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
                torch.distributed.reduce(avg_val_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
                
                if device == 0:
                  
                    all_gpus_avg_val_loss = avg_val_loss / world_size
                    print(f"All_GPUs_Val_losses: {all_gpus_avg_val_loss.item():.4f}")
          
                    wandb.log({
                        # "Learning Rate": optimizer.param_groups[0]['lr'],
                        # "All_GPUs_Train_losses": all_gpus_avg_train_loss,
                        "All_GPUs_Val_losses": all_gpus_avg_val_loss,
                        # "training_step_loss": losses['train'],
                        "val_step_loss": losses['val'],
                        # "Step": step,
                        # "Epoch": epoch
                    })
                
                
            
         

            if step % save_chechpoint_iter == 0 and device == 0 and step != 0:
                print(f"Saving the model checkpoint for step: {step}")
                _save_snapshot(model, optimizer, None, None, step)
            
            accumulated_loss = 0.0
            
            
            optimizer.zero_grad(set_to_none=True)
            for micro_step in range(gradient_accumulation_steps):
                try:
                    batch = next(train_data_iterator)
                except StopIteration:
                    train_data_iterator = iter(train_dataloader)
                    batch = next(train_data_iterator)
                # print(batch)
                # batch = next(train_data_iterator)
                # print(batch)
                # batch = {k: v.to(self.local_rank) for k, v in batch.items()}
                idx = batch['input_ids'].to(device)
                # idx, targets = get_batch(split='train')
                # print(f"Starting the train step: {step}...")
                # for idx, targets in train_loader:
                # idx, targets = next(iter(train_loader))
                
                # print("Idx: ", idx)
                # print("Targets: ", targets)
                
                # idx = idx.to(device)
                # print("Idx: ", idx)
                # print("Targets: ", targets)
                targets = batch['labels'].to(device)
                token_count += len(idx)
                with torch.autocast(device_type=ModelArgs.device, dtype=torch.bfloat16):
                    logits = model(idx)
                    batch_size, block_size, embeddings_dims = logits.shape
                    # print(logits.shape)
                    # print(targets)
                    logits = logits.view(batch_size*block_size, embeddings_dims)
                    # print("OK")
                    targets = targets.view(batch_size * block_size)
                    # print("OK2")
                    loss = nn.functional.cross_entropy(logits, targets, ignore_index=tokenizer.pad_token_id)
                    
                    loss = loss / gradient_accumulation_steps #IDK why div is done here specifically? Maybe think of it in terms of a very big batch being processed and there is need for equal important of each mini batch for the overall big batch
                    accumulated_loss += loss.detach()
                
                model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1) # so that we dont synchronize the gradient everytime across the GPU devices
                scaler.scale(loss).backward()
                    # Check for unused parameters
                unused_params = find_unused_parameters(model)
                if unused_params:
                    print(f"Unused parameters: {unused_params}")
            # break
        
                if(device == 0):
                    if(micro_step % 10 == 0):
                #     if(step == train_loader_length):
                #       break
                        
                        print("Micro Batch : ", micro_step)
                        print("Step : ", step, "/", total_iters)
                        print('Total batches: ', len(train_dataloader))
                        print("Total gradient accumulation steps: ", gradient_accumulation_steps)
                        print("Total tokens processed: ", token_count)
                # count += 1
        
            lr = get_lr(step)
            for params in optimizer.param_groups:
                params['lr'] = lr
                
            
            
            # Compute gradient norms before clipping
            if(ModelArgs.clip != 0.0):
                scaler.unscale_(optimizer) #To avoid underflow
                total_norm_before = torch.norm(
                    torch.stack([torch.norm(p.grad.detach(), 2) for p in model.parameters()]), 2
                )

                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=ModelArgs.clip)

                # Compute gradient norms after clipping
                total_norm_after = torch.norm(
                    torch.stack([torch.norm(p.grad.detach(), 2) for p in model.parameters()]), 2
                )
                
                if(device  == 0 and step !=0):
                    print(f"Gradient Norm Before Clipping: {total_norm_before.item():.4f}")
                    print(f"Gradient Norm After Clipping: {total_norm_after.item():.4f}")

            scaler.step(optimizer)
            scaler.update()
        
            # optimizer.step()
            # new_scheduler.step()
            
            torch.cuda.synchronize() 
            torch.distributed.reduce(loss, dst=0, op=torch.distributed.ReduceOp.SUM)
            if(device == 0):
                wandb.log({
                        "Learning Rate": lr,
                        "All_GPUs_Train_losses": accumulated_loss.item(),
                        # "All_GPUs_Val_losses": all_gpus_avg_val_loss,
                        # "training_step_loss": losses['train'],
                        # "val_step_loss": losses['val'],
                        "Step": step,
                        # "Epoch": epoch
                        
                    })
            # print(loss.item())
       
            # break
            if device == 0 and step % 5 == 0:
                count = 3
                while(count):  # Only generate text on the main process
                  
                    prompt = "Once upon a time"
                    generated_text = topk_sampling(model, prompt, max_length=50, top_k=50, temperature=1.0, device=device)
        
       
                    print(f" Step: {step} | Generated Text: {generated_text}")
              
                    count -= 1
            
     
        if device == 0:
          
            wandb.finish()
        cleanup()


    world_size = torch.cuda.device_count()
    print(f"World size: {world_size}")
        
    


def parse_args():
    parser = argparse.ArgumentParser(description="Model Training Arguments")
    
    # Add arguments for each field in ModelArgs
    parser.add_argument("--epochs", type=int, default=ModelArgs.epochs, help="Number of training epochs.")
    parser.add_argument("--block_size", type=int, default=ModelArgs.block_size, help="Block size for the model.")
    parser.add_argument("--batch_size", type=int, default=ModelArgs.batch_size, help="Batch size for training.")
    # parser.add_argument("--inference", type=lambda x: (str(x).lower() == 'true'), default=ModelArgs.inference, help="Whether to run in inference mode.")
    parser.add_argument("--embeddings_dims", type=int, default=ModelArgs.embeddings_dims, help="Embedding dimensions.")
    parser.add_argument("--attn_dropout", type=float, default=ModelArgs.attn_dropout, help="Attention dropout rate.")
    parser.add_argument("--no_of_heads", type=int, default=ModelArgs.no_of_heads, help="Number of attention heads.")
    parser.add_argument("--dropout", type=float, default=ModelArgs.dropout, help="Dropout rate.")
    parser.add_argument("--val_epochs", type=int, default=ModelArgs.val_epochs, help="Number of validation epochs.")
    parser.add_argument("--max_lr", type=float, default=ModelArgs.max_lr, help="Learning rate.")
    parser.add_argument("--no_of_decoder_layers", type=int, default=ModelArgs.no_of_decoder_layers, help="Number of decoder layers.")
    parser.add_argument("--weight_decay_optim", type=float, default=ModelArgs.weight_decay_optim, help="Weight decay for optimizer.")
    parser.add_argument("--beta_1", type=float, default=ModelArgs.beta_1, help="Beta1 for Adam optimizer.")
    parser.add_argument("--beta_2", type=float, default=ModelArgs.beta_2, help="Beta2 for Adam optimizer.")
    parser.add_argument("--clip", type=float, default=ModelArgs.clip, help="Gradient clipping value.")
    parser.add_argument("--device", type=str, default=ModelArgs.device, help="Device to run the model on (e.g., 'cuda' or 'cpu').")
    parser.add_argument("--no_kv_heads", type=int, default=ModelArgs.no_kv_heads, help="Number of key/value heads.")
    parser.add_argument("--vocab_size", type=int, default=ModelArgs.vocab_size, help="Vocabulary size.")
    parser.add_argument("--eps", type=float, default=ModelArgs.eps, help="Epsilon value for numerical stability.")
    parser.add_argument("--dtype", type=str, default=ModelArgs.dtype, help="Data type for tensors (e.g., 'float16' or 'bfloat16').")
    parser.add_argument("--save_checkpoint_dir", type=str, default=ModelArgs.save_checkpoint_dir, help="Directory to save model checkpoints.")
    parser.add_argument("--prompt", type=str, default=ModelArgs.prompt, help="Prompt for testing during training.")
    
    # Additional arguments
    parser.add_argument("--save_checkpoint_iter", type=int, default=ModelArgs.save_checkpoint_iter, help="Save checkpoint every N iterations.")
    parser.add_argument("--total_iters", type=int, default=ModelArgs.total_iters, help="Total number of training iterations.")
    parser.add_argument("--eval_iters", type=int, default=ModelArgs.eval_iters, help="Number of iterations for evaluation.")
    parser.add_argument("--eval_check", type=int, default=ModelArgs.eval_check, help="Evaluate model every N iterations.")
    parser.add_argument("--warmup_iters", type=int, default=ModelArgs.warmup_iters, help="Number of warmup iterations for learning rate scheduling.")
    parser.add_argument("--min_lr", type=float, default=ModelArgs.min_lr, help="Minimum learning rate.")
    parser.add_argument("--lr_decay_iters", type=int, default=ModelArgs.lr_decay_iters, help="Number of iterations for learning rate decay.")
    parser.add_argument("--total_batch_size", type=int, default=ModelArgs.total_batch_size, help="Total batch size across all devices.")
    parser.add_argument("--micro_batch_size", type=int, default=ModelArgs.micro_batch_size, help="Micro batch size per device.")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=ModelArgs.gradient_accumulation_steps, help="Number of gradient accumulation steps.")
    
    args = parser.parse_args()
    return args


def initialize_model_args(args):
    # Create a ModelArgs instance from the parsed arguments
    model_args = ModelArgs(
        epochs=args.epochs,
        block_size=args.block_size,
        batch_size=args.batch_size,
        # inference=args.inference,
        embeddings_dims=args.embeddings_dims,
        attn_dropout=args.attn_dropout,
        no_of_heads=args.no_of_heads,
        dropout=args.dropout,
        val_epochs=args.val_epochs,
        max_lr=args.max_lr,
        no_of_decoder_layers=args.no_of_decoder_layers,
        weight_decay_optim=args.weight_decay_optim,
        beta_1=args.beta_1,
        beta_2=args.beta_2,
        clip=args.clip,
        device=args.device,
        no_kv_heads=args.no_kv_heads,
        vocab_size=args.vocab_size,
        eps=args.eps,
        dtype=args.dtype,
        save_checkpoint_dir=args.save_checkpoint_dir,
        prompt=args.prompt,
        save_checkpoint_iter=args.save_checkpoint_iter,
        total_iters=args.total_iters,
        eval_iters=args.eval_iters,
        eval_check=args.eval_check,
        warmup_iters=args.warmup_iters,
        min_lr=args.min_lr,
        lr_decay_iters=args.lr_decay_iters,
        total_batch_size=args.total_batch_size,
        micro_batch_size=args.micro_batch_size,
        gradient_accumulation_steps=args.gradient_accumulation_steps
    )
    return model_args


if __name__ == "__main__":
    args = parse_args()
    

    model_args = initialize_model_args(args)