StoryLlama / inference_sft.py
YuvrajSingh9886's picture
Upload inference_sft.py
02ba82b verified
from config import ModelArgs
from model import Llama
import torch
import torch.nn.functional as F
from tokenizer import Tokenizer
import argparse
tokenizer = Tokenizer()
tokenizer = tokenizer.ready_tokenizer()
def remove_hashtag_lines(text):
"""Removes lines that contain hashtags from the given text."""
lines = text.split("\n")
cleaned_lines = [line for line in lines if "#" not in line]
return "\n".join(cleaned_lines)
def remove_prefix(state_dict, prefix):
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith(prefix):
new_key = key[len(prefix):] # Remove the prefix
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
return new_state_dict
def topk_sampling(model, prompt, device, max_length=50, top_k=50, temperature=1.0, frequency_penalty=0.5):
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
# generated_tokens = [] # Store generated tokens
token_frequencies = {} # Track token counts
for step in range(max_length):
with torch.no_grad():
outputs = model(input_ids)
logits = outputs[:, -1, :] # Get logits for next token
logits = logits / temperature
# # Step 1: Apply frequency penalty ONLY AFTER the first token is generated
if step > 0: # Skip penalty on first step
for token in input_ids[0].tolist():
token_frequencies[token] = token_frequencies.get(token, 0) + 1 # Count occurrences
# Modify logits AFTER counting
for token, freq in token_frequencies.items():
logits[0, token] -= frequency_penalty * (freq ** 0.8) # Apply soft penalty
# Convert logits to probabilities
probs = F.softmax(logits, dim=-1)
# Top-k filtering
top_k_probs, top_k_indices = torch.topk(probs, top_k, dim=-1)
# Apply temperature scaling
# probs = probs / temperature
# Sample from top-k
next_token = torch.multinomial(top_k_probs, num_samples=1)
# if next_token.item() == tokenizer.eos_token_id:
# break # Stop if EOS token is generated
# Store generated token AFTER sampling
# token_id = next_token.item()
# generated_tokens.append(token_id)
# Update input_ids for next step
xcol = torch.gather(top_k_indices, -1, next_token)
if xcol == tokenizer.eos_token_id:
break
# generated_tokens.append(xcol)
input_ids = torch.cat([input_ids, xcol], dim=1)
# Decode only the generated tokens
return tokenizer.decode(input_ids[0], skip_special_tokens=True)
def main():
# torch.set_float32_matmul_precision('high')
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default=''' Follow the given instructions carefully. My mom is about to retire from her 10 long years of service to a company. write me a message saying how grateful we are for her service to our company. ''')
parser.add_argument("--max_length", type=int, default=256)
parser.add_argument("--temperature", type=float, default=0.8)
# parser.add_argument("--repetition_penalty", type=float, default=1.2)
args = parser.parse_args()
model = Llama(device=ModelArgs.device, embeddings_dims=ModelArgs.embeddings_dims, no_of_decoder_layers=ModelArgs.no_of_decoder_layers, block_size=ModelArgs.block_size, vocab_size=ModelArgs.vocab_size, dropout=ModelArgs.dropout)
# model = torch.compile(model)
model = model.to(ModelArgs.device)
dict_model = torch.load('DPO_model_1650.pt')
dict_model['MODEL_STATE'] = remove_prefix(dict_model['MODEL_STATE'], '_orig_mod.')
model.load_state_dict(dict_model['MODEL_STATE'])
model.eval()
print("Model ready")
# prompt = 'Its a secret'
with torch.no_grad():
generated_text = topk_sampling(model, args.prompt, max_length=args.max_length, top_k=args.top_k, temperature=args.temperature, device=ModelArgs.device)
# generated_text = remove_hashtag_lines(generated_text)
print("Generated: ", generated_text)
# generated_text = beam_search(model, tokenizer, args.prompt, beam_width=5, max_length=50, temperature=1.0)
# print(args.prompt + generated_text)
if __name__ == '__main__':
main()