from config import ModelArgs import torch import torch.nn as nn import torch.nn.functional as F class Normalization(nn.Module): def __init__( self, embeddings_dims: int = ModelArgs.embeddings_dims ): super().__init__() self.rmsnorm_layer = torch.nn.RMSNorm(normalized_shape=embeddings_dims) def forward(self, x): x = self.rmsnorm_layer(x) return x # import numpy as np class RotaryEmbeddings(nn.Module): def __init__( self, device, embeddings_dims: int = ModelArgs.embeddings_dims, block_size: int = ModelArgs.block_size, batch_size: int = ModelArgs.batch_size ): super().__init__() self.embeddings_dims = embeddings_dims self.block_size = block_size self.batch_size = batch_size self.theta = 0 self.device=device # self.d_model = embeddings_dims # self.i = torch.arange(0, embeddings_dims, dtype=torch.float32) # # self.pos = torch.arange(0, block_size, dtype=torch.float32) # self.exp = ((2 * self.i)) / self.d_model # self.theta = 10000 ** self.exp # # print(self.theta.shape) # self.x_reshaped = torch.randn(batch_size, block_size, embeddings_dims,dtype=torch.float32, device=device) # self.cos = torch.cos((self.i / self.theta)) # self.sin = torch.sin((self.i / self.theta)) # self.even = self.sin[::2] # self.odd = self.cos[1::2] # # self.block = torch.empty((odd.size(0) + even.size(0),), dtype=self.even.dtype) # self.x_reshaped[..., : , ::2] = self.even # self.x_reshaped[..., : , 1::2] = self.odd def apply_rope(self, seq): batch_size, seq_len, embeds_dims = seq.shape # print(seq.shape) # print(self.embeddings_dims) # self.matrix = torch.zeros((seq_len, self.embeddings_dims, self.embeddings_dims), dtype=torch.float32, requires_grad=False, device = self.device) positions = torch.arange(0 , embeds_dims, 2, dtype=torch.float32, device = self.device).unsqueeze(0) # dims = torch.arange(1, self.embeddings_dims // 2, dtype=torch.float32) theta = 10000 ** (-2 * (positions) / embeds_dims) angles = positions * theta angles = angles.expand(seq_len, -1) # because this thing needs to be applied to every sequence in the batch but with embeds dims halved x_reshaped = seq.view(batch_size, seq_len, embeds_dims // 2, 2) cos_angles = torch.cos(angles) sin_angles = torch.sin(angles) # print(cos_angles.shape) # print(sin_angles.shape) # print(x_reshaped.shape) # indices = torch.arange(self.embeddings_dims, dtype=torch.int64, device = self.device) out = torch.stack([x_reshaped[..., 0]*cos_angles - (x_reshaped[...,1] * sin_angles), x_reshaped[...,1] * cos_angles + x_reshaped[..., 0] * sin_angles], dim=-1) out = out.view(batch_size, seq_len, embeds_dims) return out def forward(self, x): # print("X shape: ", x.shape) # print("X is: ", x) # B,T,C = x.shape # print("MATRIX:",x) # if(x > self.block_size or x < self.block_size): # matrix = self.init_matrix(x) # return matrix # else: # matrix = self.init_matrix(self.block_size) # return matrix # if(ModelArgs.inference): res = self.apply_rope(x) return res # else: # return self.x_reshaped class RotaryAttentionHead(nn.Module): def __init__( self, device, embeddings_dims: int = ModelArgs.embeddings_dims, no_of_heads: int = ModelArgs.no_of_heads, attn_dropout: int = ModelArgs.attn_dropout ): super().__init__() self.head_size = embeddings_dims // no_of_heads self.query = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False, dtype=torch.float32, device = device) self.key = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False, dtype=torch.float32, device = device) self.value = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False, dtype=torch.float32, device = device) self.rope = RotaryEmbeddings(embeddings_dims=self.head_size, device = device) self.dropout = nn.Dropout(p = attn_dropout) self.device = device def forward(self,x): # print(x.shape) # print("X is: ", x) batch, block_size, embeddings_dims = x.shape query = self.query(x) # print(query) key = self.key(x) values = self.value(x) # matrix = self.rotary_matrix(block_size) rotary_q = self.rope(query) rotary_k = self.rope(key) # print(matrix.shape) # print(query.shape) masked = torch.tril(torch.ones((block_size, block_size), requires_grad=False, device = self.device)) # rotary_query = matrix @ query.permute(1,2,0) # (B,T, C,C) @ (B,T,C) -> (B,C,T) = (B,T,C,T) # rotary_key = matrix @ key.permute(1,2,0) # (B,T, C,C ) @ (B,T,C) -> (B,C,T) = (B,T,C,T) weights = rotary_q.permute(2,0,1) @ rotary_k.permute(2,0,1).transpose(-2, -1)#(B,T,C,T) @ (B,T,C,T) = (T,C,C,T) weights_masked = weights.masked_fill(masked == 0, float('-inf')) scaled_weights = weights_masked / (torch.sqrt(torch.tensor(key.shape[-1]))) scaled_weights = F.softmax(scaled_weights, dim=-1) value = scaled_weights @ values out = self.dropout(value) return out # # import numpy as np # class RotaryEmbeddings(nn.Module): # def __init__( # self, # device, # embeddings_dims: int = ModelArgs.embeddings_dims, # block_size: int = ModelArgs.block_size, # batch_size: int = ModelArgs.batch_size # ): # super().__init__() # self.embeddings_dims = embeddings_dims # self.block_size = block_size # self.batch_size = batch_size # self.theta = 0 # # def init_matrix(self, seq_len): # # self.matrix = torch.zeros((seq_len, self.embeddings_dims, self.embeddings_dims), dtype=torch.float32, requires_grad=False) # # for pos in range(seq_len): # # for j in range(1, self.embeddings_dims // 2): # # self.theta = 10000 ** (-2*(pos-1) / self.embeddings_dims) # # self.matrix[pos, 2*j + 1, 2*j + 1] = np.cos((pos*self.theta)) # # self.matrix[pos, 2*j + 1, j + 1] = -np.sin((pos* self.theta)) # # self.matrix[pos, 2*j , 2*j ] = -np.cos((pos* self.theta)) # # self.matrix[pos, 2*j + 1, 2*j + 1] = np.sin((pos* self.theta)) # # return self.matrix # self.device=device # def init_matrix(self, seq_len): # self.matrix = torch.zeros((seq_len, self.embeddings_dims, self.embeddings_dims), dtype=torch.float32, requires_grad=False, device = self.device) # positions = torch.arange(0 , seq_len, 2, dtype=torch.float32, device = self.device).unsqueeze(1) # # dims = torch.arange(1, self.embeddings_dims // 2, dtype=torch.float32) # theta = 10000 ** (-2 * (positions - 1) / self.embeddings_dims) # angles = positions * theta # cos_angles = torch.cos(angles) # sin_angles = torch.sin(angles) # indices = torch.arange(seq_len, dtype=torch.int64, device = self.device) # # print(indices) # # print(indices.shape) # # print(indices[::2]) # even_indices = indices[::2] # odd_indices = indices[1::2] # self.matrix[:, even_indices, even_indices] = cos_angles # self.matrix[:, odd_indices, odd_indices] = sin_angles # self.matrix[:, odd_indices, even_indices] = -sin_angles # self.matrix[:, even_indices, odd_indices] = cos_angles # return self.matrix # def forward(self, x): # # B,T,C = x.shape # # print("MATRIX:",x) # if(x > self.block_size or x < self.block_size): # matrix = self.init_matrix(x) # return matrix # else: # matrix = self.init_matrix(self.block_size) # return matrix # class RotaryAttentionHead(nn.Module): # def __init__( # self, # device, # embeddings_dims: int = ModelArgs.embeddings_dims, # no_of_heads: int = ModelArgs.no_of_heads, # attn_dropout: int = ModelArgs.attn_dropout # ): # super().__init__() # self.head_size = embeddings_dims // no_of_heads # self.query = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False, dtype=torch.float32, device = device) # self.key = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False, dtype=torch.float32, device = device) # self.value = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False, dtype=torch.float32, device = device) # self.rotary_matrix = RotaryEmbeddings(embeddings_dims=self.head_size, device = device) # self.dropout = nn.Dropout(p = attn_dropout) # self.device = device # def forward(self,x): # # print(x.shape) # batch, block_size, embeddings_dims = x.shape # query = self.query(x) # # print(query) # key = self.key(x) # values = self.value(x) # matrix = self.rotary_matrix(block_size) # # print(matrix.shape) # # print(query.shape) # masked = torch.tril(torch.ones((block_size, block_size), requires_grad=False, device = self.device)) # rotary_query = matrix @ query.permute(1,2,0) # (B,T, C,C) @ (B,T,C) -> (B,C,T) = (B,T,C,T) # rotary_key = matrix @ key.permute(1,2,0) # (B,T, C,C ) @ (B,T,C) -> (B,C,T) = (B,T,C,T) # weights = rotary_query.permute(2,0,1) @ rotary_key.permute(2,0,1).transpose(-2, -1)#(B,T,C,T) @ (B,T,C,T) = (T,C,C,T) # weights_masked = weights.masked_fill(masked == 0, float('-inf')) # scaled_weights = weights_masked / (torch.sqrt(torch.tensor(key.shape[-1]))) # scaled_weights = F.softmax(scaled_weights, dim=-1) # value = scaled_weights @ values # out = self.dropout(value) # return out class MQA(nn.Module): def __init__( self, device, no_of_q_heads: int, embeddings_dims: int = ModelArgs.embeddings_dims, block_size: int = ModelArgs.block_size, ): super().__init__() # self.no_of_q_heads = no_of_heads // no_of_kv_heads # self.no_of_q_heads = no_of_q_heads self.no_of_kv_heads = 2 # I want to have a kv for each pair of query heads self.head_size = embeddings_dims // no_of_q_heads # self.kv_head_size = (embeddings_dims // self.no_of_kv_heads) * 2 self.rotary= RotaryEmbeddings(embeddings_dims=self.head_size, device = device) # self.rotary_k = RotaryEmbeddings(embeddings_dims=self.kv_head_size, device = device) # self.query = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False) self.key = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, dtype=torch.float32, bias=False, device = device) self.value = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, dtype=torch.float32, bias=False, device = device) self.dropout = nn.Dropout(p = ModelArgs.attn_dropout) self.linear_layer = nn.Linear(in_features=self.head_size * self.no_of_kv_heads, out_features=embeddings_dims, dtype=torch.float32, bias=False, device = device) self.device = device self.multi_query = nn.ModuleList([nn.Linear(in_features=embeddings_dims, out_features=self.head_size, bias=False, device = self.device) for _ in range(self.no_of_kv_heads)]) def scaled_dot_product(self, q, k, v, block_size): # masked = torch.tril(torch.ones((block_size, block_size), requires_grad=False, device = self.device)) q = self.rotary(q) masked_table = torch.tril(torch.ones((block_size, block_size), requires_grad=False, device = self.device)) # rotary_query = matrix @ q.permute(1,2,0) # (B,T, C,C) @ (B,T,C) -> (B,C,T) = (B,T,C,T) # rotary_key = matrix @ k.permute(1,2,0) # (B,T, C,C ) @ (B,T,C) -> (B,C,T) = (B,T,C,T) # print("Query: ", q.shape) # print("Keys: ", k.shape) # print(q.permute(2,0,1).shape) # print(k.permute(2,0,1).transpose(-2, -1).shape) # weights = q.permute(2,0,1) @ k.permute(2,0,1).transpose(-2, -1)#(B,T,C,T) @ (B,T,C,T) = (T,C,C,T) # weights = q @ k.permute(2,1,0) # print(weights.shape) # print(masked.shape) weights = q @ torch.transpose(k, dim0=-2, dim1=-1) * (k.shape[-1] ** -0.5) masked_values = weights.masked_fill(masked_table[: block_size, : block_size] == 0, float('-inf')) weights_normalized = nn.functional.softmax(masked_values, dim=-1) #Normalize along the embeddings dimension for all the tokens weights_normalized = self.dropout(weights_normalized) out = weights_normalized @ v return out def forward(self,x): # print("MQA: ", x.shape) batch, block_size, embeddings_dims = x.shape # query = self.query(x) # matrix = self.rotary_matrix(block_size) key = self.key(x) values = self.value(x) # print("Keys: ", key.shape) # print("Values: ", values.shape) # rotary_value = self.rotary(values) rotary_key = self.rotary(key) multi_query_concat = torch.cat([self.scaled_dot_product(query(x), rotary_key, values, block_size) for query in self.multi_query], dim=-1) # print("Multi query: ", multi_query_concat.shape) linear_layer= self.linear_layer(multi_query_concat) # out = self.dropout(linear_layer) return linear_layer class GQA(nn.Module): def __init__( self, device, embeddings_dims: int = ModelArgs.embeddings_dims, block_size: int = ModelArgs.block_size, # no_of_q_heads: int = ModelArgs.no_of_heads, mqa_heads: int = ModelArgs.no_kv_heads ): super().__init__() # self.no_of_kv_heads = no_of_kv_heads self.no_of_q_heads = ModelArgs.no_of_heads // mqa_heads # self.head_dim = embeddings_dims // self.no_kv_heads self.dropout = nn.Dropout(p = ModelArgs.attn_dropout) self.linear_layer = nn.Linear(in_features=embeddings_dims * self.no_of_q_heads, out_features=embeddings_dims , dtype=torch.float32, bias=False, device = device) self.device = device self.mqa = nn.ModuleList([MQA(no_of_q_heads=self.no_of_q_heads, embeddings_dims=embeddings_dims, device = self.device, block_size=block_size) for _ in range(self.no_of_q_heads)]) # self.mqa = MQA(no_of_q_heads=self.no_of_q_heads, device=self.device, embeddings_dims=embeddings_dims, block_size=block_size) def forward(self,x): batch, block_size, embeddings_dims = x.shape # res = self.mqa(x) grouped_query_concat = torch.cat([group(x) for group in self.mqa], dim=-1) linear_layer= self.linear_layer(grouped_query_concat) #Basically MQA is made into GQA with no_of_q_heads and this class right here is just to consolidate everything into one out = self.dropout(linear_layer) return out class Swish(nn.Module): def __init__( self, device, block_size: int = ModelArgs.block_size, embeddings_dims: int = ModelArgs.embeddings_dims ): super().__init__() self.sig = torch.nn.Sigmoid() def forward(self, x): swish = x * self.sig(x) return swish class SWiGLU(nn.Module): def __init__( self, device, block_size: int = ModelArgs.block_size, embeddings_dims: int = ModelArgs.embeddings_dims ): super().__init__() self.hidden_dims = int(2 * ( 4 * embeddings_dims) / 3) self.swish = Swish(block_size=block_size, embeddings_dims=embeddings_dims, device=device) self.linear_layer1 = nn.Linear(in_features=embeddings_dims, out_features=self.hidden_dims, bias=False, dtype=torch.float32, device = device) self.linear_layer2 = nn.Linear(in_features=embeddings_dims, out_features=self.hidden_dims, bias=False, dtype=torch.float32, device = device) self.linear_layer3 = nn.Linear(in_features=self.hidden_dims, out_features=embeddings_dims, bias=False, dtype=torch.float32, device = device) def forward(self, x): swish_res = self.swish(self.linear_layer1(x)) x_V = self.linear_layer2(x) res = torch.mul(swish_res, x_V) out = self.linear_layer3(res) return out class FFN(nn.Module): def __init__(self, device, embeddings_dims: int = ModelArgs.embeddings_dims, block_size: int = ModelArgs.block_size, vocab_size: int = ModelArgs.vocab_size, dropout = ModelArgs.dropout ): super().__init__() # self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=embeddings_dims, dtype=torch.float32, device = device) self.swiglue = SWiGLU(block_size=block_size, embeddings_dims=embeddings_dims, device = device) self.dropout = nn.Dropout(p = dropout) def forward(self, x): x = self.swiglue(x) # x = self.linear_layer(x) x = self.dropout(x) return x class DecoderLayer(nn.Module): def __init__(self, device, embeddings_dims: int = ModelArgs.embeddings_dims, dropout = ModelArgs.dropout, block_size: int = ModelArgs.block_size, vocab_size: int = ModelArgs.vocab_size, ) : super().__init__() self.feedforward_network = FFN(embeddings_dims=embeddings_dims, block_size=block_size, vocab_size=vocab_size, device = device) self.gqa = GQA(embeddings_dims=embeddings_dims, block_size=block_size, mqa_heads=2, device = device) # self.norm = Normalization(embeddings_dims=embeddings_dims) self.norm1 = Normalization(embeddings_dims=embeddings_dims) self.norm2 = Normalization(embeddings_dims=embeddings_dims) self.dropout = nn.Dropout(p = dropout) def forward(self, x): x = x + self.gqa(self.norm1(x)) x = x + self.feedforward_network(self.norm2(x)) return x class Llama(nn.Module): def __init__(self, device, embeddings_dims: int = ModelArgs.embeddings_dims, no_of_decoder_layers: int = ModelArgs.no_of_decoder_layers, block_size: int = ModelArgs.block_size, vocab_size: int = ModelArgs.vocab_size, dropout = ModelArgs.dropout ) : super().__init__() self.embeddings = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeddings_dims, dtype=torch.float32, device = device) self.decoder = nn.Sequential(*[DecoderLayer(embeddings_dims=embeddings_dims, block_size=block_size, vocab_size=vocab_size, dropout=dropout, device = device) for _ in range(no_of_decoder_layers)]) self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=vocab_size, dtype=torch.float32, device = device) self.dropout = nn.Dropout(p = dropout) # self.norm = Normalization(embeddings_dims) #weight tying self.embeddings.weight = self.linear_layer.weight self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, x): x = self.embeddings(x) x = self.dropout(x) x = self.decoder(x) # x = self.norm(x) x = self.linear_layer(x) # out = self.norm(x) return x