Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,908 Bytes
c8d9d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from typing import *
from numbers import Number
from functools import partial
from pathlib import Path
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
import torch.utils.checkpoint
import torch.amp
import torch.version
import utils3d
from huggingface_hub import hf_hub_download
from ..utils.geometry_torch import normalized_view_plane_uv, recover_focal_shift, angle_diff_vec3
from .utils import wrap_dinov2_attention_with_sdpa, wrap_module_with_gradient_checkpointing, unwrap_module_with_gradient_checkpointing
from .modules import DINOv2Encoder, MLP, ConvStack
class MoGeModel(nn.Module):
encoder: DINOv2Encoder
neck: ConvStack
points_head: ConvStack
mask_head: ConvStack
scale_head: MLP
def __init__(self,
encoder: Dict[str, Any],
neck: Dict[str, Any],
points_head: Dict[str, Any] = None,
mask_head: Dict[str, Any] = None,
normal_head: Dict[str, Any] = None,
scale_head: Dict[str, Any] = None,
remap_output: Literal['linear', 'sinh', 'exp', 'sinh_exp'] = 'linear',
num_tokens_range: List[int] = [1200, 3600],
**deprecated_kwargs
):
super(MoGeModel, self).__init__()
if deprecated_kwargs:
warnings.warn(f"The following deprecated/invalid arguments are ignored: {deprecated_kwargs}")
self.remap_output = remap_output
self.num_tokens_range = num_tokens_range
self.encoder = DINOv2Encoder(**encoder)
self.neck = ConvStack(**neck)
if points_head is not None:
self.points_head = ConvStack(**points_head)
if mask_head is not None:
self.mask_head = ConvStack(**mask_head)
if normal_head is not None:
self.normal_head = ConvStack(**normal_head)
if scale_head is not None:
self.scale_head = MLP(**scale_head)
@property
def device(self) -> torch.device:
return next(self.parameters()).device
@property
def dtype(self) -> torch.dtype:
return next(self.parameters()).dtype
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, Path, IO[bytes]], model_kwargs: Optional[Dict[str, Any]] = None, **hf_kwargs) -> 'MoGeModel':
"""
Load a model from a checkpoint file.
### Parameters:
- `pretrained_model_name_or_path`: path to the checkpoint file or repo id.
- `compiled`
- `model_kwargs`: additional keyword arguments to override the parameters in the checkpoint.
- `hf_kwargs`: additional keyword arguments to pass to the `hf_hub_download` function. Ignored if `pretrained_model_name_or_path` is a local path.
### Returns:
- A new instance of `MoGe` with the parameters loaded from the checkpoint.
"""
if Path(pretrained_model_name_or_path).exists():
checkpoint_path = pretrained_model_name_or_path
else:
checkpoint_path = hf_hub_download(
repo_id=pretrained_model_name_or_path,
repo_type="model",
filename="model.pt",
**hf_kwargs
)
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=True)
model_config = checkpoint['model_config']
if model_kwargs is not None:
model_config.update(model_kwargs)
model = cls(**model_config)
model.load_state_dict(checkpoint['model'], strict=False)
return model
def init_weights(self):
self.encoder.init_weights()
def enable_gradient_checkpointing(self):
self.encoder.enable_gradient_checkpointing()
self.neck.enable_gradient_checkpointing()
for head in ['points_head', 'normal_head', 'mask_head']:
if hasattr(self, head):
getattr(self, head).enable_gradient_checkpointing()
def enable_pytorch_native_sdpa(self):
self.encoder.enable_pytorch_native_sdpa()
def _remap_points(self, points: torch.Tensor) -> torch.Tensor:
if self.remap_output == 'linear':
pass
elif self.remap_output =='sinh':
points = torch.sinh(points)
elif self.remap_output == 'exp':
xy, z = points.split([2, 1], dim=-1)
z = torch.exp(z)
points = torch.cat([xy * z, z], dim=-1)
elif self.remap_output =='sinh_exp':
xy, z = points.split([2, 1], dim=-1)
points = torch.cat([torch.sinh(xy), torch.exp(z)], dim=-1)
else:
raise ValueError(f"Invalid remap output type: {self.remap_output}")
return points
def forward(self, image: torch.Tensor, num_tokens: int) -> Dict[str, torch.Tensor]:
batch_size, _, img_h, img_w = image.shape
device, dtype = image.device, image.dtype
aspect_ratio = img_w / img_h
base_h, base_w = int((num_tokens / aspect_ratio) ** 0.5), int((num_tokens * aspect_ratio) ** 0.5)
num_tokens = base_h * base_w
# Backbones encoding
features, cls_token = self.encoder(image, base_h, base_w, return_class_token=True)
features = [features, None, None, None, None]
# Concat UVs for aspect ratio input
for level in range(5):
uv = normalized_view_plane_uv(width=base_w * 2 ** level, height=base_h * 2 ** level, aspect_ratio=aspect_ratio, dtype=dtype, device=device)
uv = uv.permute(2, 0, 1).unsqueeze(0).expand(batch_size, -1, -1, -1)
if features[level] is None:
features[level] = uv
else:
features[level] = torch.concat([features[level], uv], dim=1)
# Shared neck
features = self.neck(features)
# Heads decoding
points, normal, mask = (getattr(self, head)(features)[-1] if hasattr(self, head) else None for head in ['points_head', 'normal_head', 'mask_head'])
metric_scale = self.scale_head(cls_token) if hasattr(self, 'scale_head') else None
# Resize
points, normal, mask = (F.interpolate(v, (img_h, img_w), mode='bilinear', align_corners=False, antialias=False) if v is not None else None for v in [points, normal, mask])
# Remap output
if points is not None:
points = points.permute(0, 2, 3, 1)
points = self._remap_points(points) # slightly improves the performance in case of very large output values
if normal is not None:
normal = normal.permute(0, 2, 3, 1)
normal = F.normalize(normal, dim=-1)
if mask is not None:
mask = mask.squeeze(1).sigmoid()
if metric_scale is not None:
metric_scale = metric_scale.squeeze(1).exp()
return_dict = {
'points': points,
'normal': normal,
'mask': mask,
'metric_scale': metric_scale
}
return_dict = {k: v for k, v in return_dict.items() if v is not None}
return return_dict
@torch.inference_mode()
def infer(
self,
image: torch.Tensor,
num_tokens: int = None,
resolution_level: int = 9,
force_projection: bool = True,
apply_mask: Literal[False, True, 'blend'] = True,
fov_x: Optional[Union[Number, torch.Tensor]] = None,
use_fp16: bool = True,
) -> Dict[str, torch.Tensor]:
"""
User-friendly inference function
### Parameters
- `image`: input image tensor of shape (B, 3, H, W) or (3, H, W)
- `num_tokens`: the number of base ViT tokens to use for inference, `'least'` or `'most'` or an integer. Suggested range: 1200 ~ 2500.
More tokens will result in significantly higher accuracy and finer details, but slower inference time. Default: `'most'`.
- `force_projection`: if True, the output point map will be computed using the actual depth map. Default: True
- `apply_mask`: if True, the output point map will be masked using the predicted mask. Default: True
- `fov_x`: the horizontal camera FoV in degrees. If None, it will be inferred from the predicted point map. Default: None
- `use_fp16`: if True, use mixed precision to speed up inference. Default: True
### Returns
A dictionary containing the following keys:
- `points`: output tensor of shape (B, H, W, 3) or (H, W, 3).
- `depth`: tensor of shape (B, H, W) or (H, W) containing the depth map.
- `intrinsics`: tensor of shape (B, 3, 3) or (3, 3) containing the camera intrinsics.
"""
if image.dim() == 3:
omit_batch_dim = True
image = image.unsqueeze(0)
else:
omit_batch_dim = False
image = image.to(dtype=self.dtype, device=self.device)
original_height, original_width = image.shape[-2:]
area = original_height * original_width
aspect_ratio = original_width / original_height
# Determine the number of base tokens to use
if num_tokens is None:
min_tokens, max_tokens = self.num_tokens_range
num_tokens = int(min_tokens + (resolution_level / 9) * (max_tokens - min_tokens))
# Forward pass
with torch.autocast(device_type=self.device.type, dtype=torch.float16, enabled=use_fp16 and self.dtype != torch.float16):
output = self.forward(image, num_tokens=num_tokens)
points, normal, mask, metric_scale = (output.get(k, None) for k in ['points', 'normal', 'mask', 'metric_scale'])
# Always process the output in fp32 precision
points, normal, mask, metric_scale, fov_x = map(lambda x: x.float() if isinstance(x, torch.Tensor) else x, [points, normal, mask, metric_scale, fov_x])
with torch.autocast(device_type=self.device.type, dtype=torch.float32):
if mask is not None:
mask_binary = mask > 0.5
else:
mask_binary = None
if points is not None:
# Convert affine point map to camera-space. Recover depth and intrinsics from point map.
# NOTE: Focal here is the focal length relative to half the image diagonal
if fov_x is None:
# Recover focal and shift from predicted point map
focal, shift = recover_focal_shift(points, mask_binary)
else:
# Focal is known, recover shift only
focal = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5 / torch.tan(torch.deg2rad(torch.as_tensor(fov_x, device=points.device, dtype=points.dtype) / 2))
if focal.ndim == 0:
focal = focal[None].expand(points.shape[0])
_, shift = recover_focal_shift(points, mask_binary, focal=focal)
fx, fy = focal / 2 * (1 + aspect_ratio ** 2) ** 0.5 / aspect_ratio, focal / 2 * (1 + aspect_ratio ** 2) ** 0.5
intrinsics = utils3d.torch.intrinsics_from_focal_center(fx, fy, 0.5, 0.5)
points[..., 2] += shift[..., None, None]
if mask_binary is not None:
mask_binary &= points[..., 2] > 0 # in case depth is contains negative values (which should never happen in practice)
depth = points[..., 2].clone()
else:
depth, intrinsics = None, None
# If projection constraint is forced, recompute the point map using the actual depth map & intrinsics
if force_projection and depth is not None:
points = utils3d.torch.depth_to_points(depth, intrinsics=intrinsics)
# Apply metric scale
if metric_scale is not None:
if points is not None:
points *= metric_scale[:, None, None, None]
if depth is not None:
depth *= metric_scale[:, None, None]
# Apply mask
if apply_mask and mask_binary is not None:
points = torch.where(mask_binary[..., None], points, torch.inf) if points is not None else None
depth = torch.where(mask_binary, depth, torch.inf) if depth is not None else None
normal = torch.where(mask_binary[..., None], normal, torch.zeros_like(normal)) if normal is not None else None
return_dict = {
'points': points,
'intrinsics': intrinsics,
'depth': depth,
'mask': mask_binary,
'normal': normal,
"mask_prob": mask,
}
return_dict = {k: v for k, v in return_dict.items() if v is not None}
if omit_batch_dim:
return_dict = {k: v.squeeze(0) for k, v in return_dict.items()}
return return_dict
|