Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,116 Bytes
c8d9d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
from typing import *
import math
from collections import namedtuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.types
import utils3d
def scatter_min(size: int, dim: int, index: torch.LongTensor, src: torch.Tensor) -> torch.return_types.min:
"Scatter the minimum value along the given dimension of `input` into `src` at the indices specified in `index`."
shape = src.shape[:dim] + (size,) + src.shape[dim + 1:]
minimum = torch.full(shape, float('inf'), dtype=src.dtype, device=src.device).scatter_reduce(dim=dim, index=index, src=src, reduce='amin', include_self=False)
minimum_where = torch.where(src == torch.gather(minimum, dim=dim, index=index))
indices = torch.full(shape, -1, dtype=torch.long, device=src.device)
indices[(*minimum_where[:dim], index[minimum_where], *minimum_where[dim + 1:])] = minimum_where[dim]
return torch.return_types.min((minimum, indices))
def split_batch_fwd(fn: Callable, chunk_size: int, *args, **kwargs):
batch_size = next(x for x in (*args, *kwargs.values()) if isinstance(x, torch.Tensor)).shape[0]
n_chunks = batch_size // chunk_size + (batch_size % chunk_size > 0)
splited_args = tuple(arg.split(chunk_size, dim=0) if isinstance(arg, torch.Tensor) else [arg] * n_chunks for arg in args)
splited_kwargs = {k: [v.split(chunk_size, dim=0) if isinstance(v, torch.Tensor) else [v] * n_chunks] for k, v in kwargs.items()}
results = []
for i in range(n_chunks):
chunk_args = tuple(arg[i] for arg in splited_args)
chunk_kwargs = {k: v[i] for k, v in splited_kwargs.items()}
results.append(fn(*chunk_args, **chunk_kwargs))
if isinstance(results[0], tuple):
return tuple(torch.cat(r, dim=0) for r in zip(*results))
else:
return torch.cat(results, dim=0)
def _pad_inf(x_: torch.Tensor):
return torch.cat([torch.full_like(x_[..., :1], -torch.inf), x_, torch.full_like(x_[..., :1], torch.inf)], dim=-1)
def _pad_cumsum(cumsum: torch.Tensor):
return torch.cat([torch.zeros_like(cumsum[..., :1]), cumsum, cumsum[..., -1:]], dim=-1)
def _compute_residual(a: torch.Tensor, xyw: torch.Tensor, trunc: float):
return a.mul(xyw[..., 0]).sub_(xyw[..., 1]).abs_().mul_(xyw[..., 2]).clamp_max_(trunc).sum(dim=-1)
def align(x: torch.Tensor, y: torch.Tensor, w: torch.Tensor, trunc: Optional[Union[float, torch.Tensor]] = None, eps: float = 1e-7) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
"""
If trunc is None, solve `min sum_i w_i * |a * x_i - y_i|`, otherwise solve `min sum_i min(trunc, w_i * |a * x_i - y_i|)`.
w_i must be >= 0.
### Parameters:
- `x`: tensor of shape (..., n)
- `y`: tensor of shape (..., n)
- `w`: tensor of shape (..., n)
- `trunc`: optional, float or tensor of shape (..., n) or None
### Returns:
- `a`: tensor of shape (...), differentiable
- `loss`: tensor of shape (...), value of loss function at `a`, detached
- `index`: tensor of shape (...), where a = y[idx] / x[idx]
"""
if trunc is None:
x, y, w = torch.broadcast_tensors(x, y, w)
sign = torch.sign(x)
x, y = x * sign, y * sign
y_div_x = y / x.clamp_min(eps)
y_div_x, argsort = y_div_x.sort(dim=-1)
wx = torch.gather(x * w, dim=-1, index=argsort)
derivatives = 2 * wx.cumsum(dim=-1) - wx.sum(dim=-1, keepdim=True)
search = torch.searchsorted(derivatives, torch.zeros_like(derivatives[..., :1]), side='left').clamp_max(derivatives.shape[-1] - 1)
a = y_div_x.gather(dim=-1, index=search).squeeze(-1)
index = argsort.gather(dim=-1, index=search).squeeze(-1)
loss = (w * (a[..., None] * x - y).abs()).sum(dim=-1)
else:
# Reshape to (batch_size, n) for simplicity
x, y, w = torch.broadcast_tensors(x, y, w)
batch_shape = x.shape[:-1]
batch_size = math.prod(batch_shape)
x, y, w = x.reshape(-1, x.shape[-1]), y.reshape(-1, y.shape[-1]), w.reshape(-1, w.shape[-1])
sign = torch.sign(x)
x, y = x * sign, y * sign
wx, wy = w * x, w * y
xyw = torch.stack([x, y, w], dim=-1) # Stacked for convenient gathering
y_div_x = A = y / x.clamp_min(eps)
B = (wy - trunc) / wx.clamp_min(eps)
C = (wy + trunc) / wx.clamp_min(eps)
with torch.no_grad():
# Caculate prefix sum by orders of A, B, C
A, A_argsort = A.sort(dim=-1)
Q_A = torch.cumsum(torch.gather(wx, dim=-1, index=A_argsort), dim=-1)
A, Q_A = _pad_inf(A), _pad_cumsum(Q_A) # Pad [-inf, A1, ..., An, inf] and [0, Q1, ..., Qn, Qn] to handle edge cases.
B, B_argsort = B.sort(dim=-1)
Q_B = torch.cumsum(torch.gather(wx, dim=-1, index=B_argsort), dim=-1)
B, Q_B = _pad_inf(B), _pad_cumsum(Q_B)
C, C_argsort = C.sort(dim=-1)
Q_C = torch.cumsum(torch.gather(wx, dim=-1, index=C_argsort), dim=-1)
C, Q_C = _pad_inf(C), _pad_cumsum(Q_C)
# Caculate left and right derivative of A
j_A = torch.searchsorted(A, y_div_x, side='left').sub_(1)
j_B = torch.searchsorted(B, y_div_x, side='left').sub_(1)
j_C = torch.searchsorted(C, y_div_x, side='left').sub_(1)
left_derivative = 2 * torch.gather(Q_A, dim=-1, index=j_A) - torch.gather(Q_B, dim=-1, index=j_B) - torch.gather(Q_C, dim=-1, index=j_C)
j_A = torch.searchsorted(A, y_div_x, side='right').sub_(1)
j_B = torch.searchsorted(B, y_div_x, side='right').sub_(1)
j_C = torch.searchsorted(C, y_div_x, side='right').sub_(1)
right_derivative = 2 * torch.gather(Q_A, dim=-1, index=j_A) - torch.gather(Q_B, dim=-1, index=j_B) - torch.gather(Q_C, dim=-1, index=j_C)
# Find extrema
is_extrema = (left_derivative < 0) & (right_derivative >= 0)
is_extrema[..., 0] |= ~is_extrema.any(dim=-1) # In case all derivatives are zero, take the first one as extrema.
where_extrema_batch, where_extrema_index = torch.where(is_extrema)
# Calculate objective value at extrema
extrema_a = y_div_x[where_extrema_batch, where_extrema_index] # (num_extrema,)
MAX_ELEMENTS = 4096 ** 2 # Split into small batches to avoid OOM in case there are too many extrema.(~1G)
SPLIT_SIZE = MAX_ELEMENTS // x.shape[-1]
extrema_value = torch.cat([
_compute_residual(extrema_a_split[:, None], xyw[extrema_i_split, :, :], trunc)
for extrema_a_split, extrema_i_split in zip(extrema_a.split(SPLIT_SIZE), where_extrema_batch.split(SPLIT_SIZE))
]) # (num_extrema,)
# Find minima among corresponding extrema
minima, indices = scatter_min(size=batch_size, dim=0, index=where_extrema_batch, src=extrema_value) # (batch_size,)
index = where_extrema_index[indices]
a = torch.gather(y, dim=-1, index=index[..., None]) / torch.gather(x, dim=-1, index=index[..., None]).clamp_min(eps)
a = a.reshape(batch_shape)
loss = minima.reshape(batch_shape)
index = index.reshape(batch_shape)
return a, loss, index
def align_depth_scale(depth_src: torch.Tensor, depth_tgt: torch.Tensor, weight: Optional[torch.Tensor], trunc: Optional[Union[float, torch.Tensor]] = None):
"""
Align `depth_src` to `depth_tgt` with given constant weights.
### Parameters:
- `depth_src: torch.Tensor` of shape (..., N)
- `depth_tgt: torch.Tensor` of shape (..., N)
"""
scale, _, _ = align(depth_src, depth_tgt, weight, trunc)
return scale
def align_depth_affine(depth_src: torch.Tensor, depth_tgt: torch.Tensor, weight: Optional[torch.Tensor], trunc: Optional[Union[float, torch.Tensor]] = None):
"""
Align `depth_src` to `depth_tgt` with given constant weights.
### Parameters:
- `depth_src: torch.Tensor` of shape (..., N)
- `depth_tgt: torch.Tensor` of shape (..., N)
- `weight: torch.Tensor` of shape (..., N)
- `trunc: float` or tensor of shape (..., N) or None
### Returns:
- `scale: torch.Tensor` of shape (...).
- `shift: torch.Tensor` of shape (...).
"""
dtype, device = depth_src.dtype, depth_src.device
# Flatten batch dimensions for simplicity
batch_shape, n = depth_src.shape[:-1], depth_src.shape[-1]
batch_size = math.prod(batch_shape)
depth_src, depth_tgt, weight = depth_src.reshape(batch_size, n), depth_tgt.reshape(batch_size, n), weight.reshape(batch_size, n)
# Here, we take anchors only for non-zero weights.
# Although the results will be still correct even anchor points have zero weight,
# it is wasting computation and may cause instability in some cases, e.g. too many extrema.
anchors_where_batch, anchors_where_n = torch.where(weight > 0)
# Stop gradient when solving optimal anchors
with torch.no_grad():
depth_src_anchor = depth_src[anchors_where_batch, anchors_where_n] # (anchors)
depth_tgt_anchor = depth_tgt[anchors_where_batch, anchors_where_n] # (anchors)
depth_src_anchored = depth_src[anchors_where_batch, :] - depth_src_anchor[..., None] # (anchors, n)
depth_tgt_anchored = depth_tgt[anchors_where_batch, :] - depth_tgt_anchor[..., None] # (anchors, n)
weight_anchored = weight[anchors_where_batch, :] # (anchors, n)
scale, loss, index = align(depth_src_anchored, depth_tgt_anchored, weight_anchored, trunc) # (anchors)
loss, index_anchor = scatter_min(size=batch_size, dim=0, index=anchors_where_batch, src=loss) # (batch_size,)
# Reproduce by indexing for shorter compute graph
index_1 = anchors_where_n[index_anchor] # (batch_size,)
index_2 = index[index_anchor] # (batch_size,)
tgt_1, src_1 = torch.gather(depth_tgt, dim=1, index=index_1[..., None]).squeeze(-1), torch.gather(depth_src, dim=1, index=index_1[..., None]).squeeze(-1)
tgt_2, src_2 = torch.gather(depth_tgt, dim=1, index=index_2[..., None]).squeeze(-1), torch.gather(depth_src, dim=1, index=index_2[..., None]).squeeze(-1)
scale = (tgt_2 - tgt_1) / torch.where(src_2 != src_1, src_2 - src_1, 1e-7)
shift = tgt_1 - scale * src_1
scale, shift = scale.reshape(batch_shape), shift.reshape(batch_shape)
return scale, shift
def align_depth_affine_irls(depth_src: torch.Tensor, depth_tgt: torch.Tensor, weight: Optional[torch.Tensor], max_iter: int = 100, eps: float = 1e-12):
"""
Align `depth_src` to `depth_tgt` with given constant weights using IRLS.
"""
dtype, device = depth_src.dtype, depth_src.device
w = weight
x = torch.stack([depth_src, torch.ones_like(depth_src)], dim=-1)
y = depth_tgt
for i in range(max_iter):
beta = (x.transpose(-1, -2) @ (w * y)) @ (x.transpose(-1, -2) @ (w[..., None] * x)).inverse().transpose(-2, -1)
w = 1 / (y - (x @ beta[..., None])[..., 0]).abs().clamp_min(eps)
return beta[..., 0], beta[..., 1]
def align_points_scale(points_src: torch.Tensor, points_tgt: torch.Tensor, weight: Optional[torch.Tensor], trunc: Optional[Union[float, torch.Tensor]] = None):
"""
### Parameters:
- `points_src: torch.Tensor` of shape (..., N, 3)
- `points_tgt: torch.Tensor` of shape (..., N, 3)
- `weight: torch.Tensor` of shape (..., N)
### Returns:
- `a: torch.Tensor` of shape (...). Only positive solutions are garunteed. You should filter out negative scales before using it.
- `b: torch.Tensor` of shape (...)
"""
dtype, device = points_src.dtype, points_src.device
scale, _, _ = align(points_src.flatten(-2), points_tgt.flatten(-2), weight[..., None].expand_as(points_src).flatten(-2), trunc)
return scale
def align_points_scale_z_shift(points_src: torch.Tensor, points_tgt: torch.Tensor, weight: Optional[torch.Tensor], trunc: Optional[Union[float, torch.Tensor]] = None):
"""
Align `points_src` to `points_tgt` with respect to a shared xyz scale and z shift.
It is similar to `align_affine` but scale and shift are applied to different dimensions.
### Parameters:
- `points_src: torch.Tensor` of shape (..., N, 3)
- `points_tgt: torch.Tensor` of shape (..., N, 3)
- `weights: torch.Tensor` of shape (..., N)
### Returns:
- `scale: torch.Tensor` of shape (...).
- `shift: torch.Tensor` of shape (..., 3). x and y shifts are zeros.
"""
dtype, device = points_src.dtype, points_src.device
# Flatten batch dimensions for simplicity
batch_shape, n = points_src.shape[:-2], points_src.shape[-2]
batch_size = math.prod(batch_shape)
points_src, points_tgt, weight = points_src.reshape(batch_size, n, 3), points_tgt.reshape(batch_size, n, 3), weight.reshape(batch_size, n)
# Take anchors
anchor_where_batch, anchor_where_n = torch.where(weight > 0)
with torch.no_grad():
zeros = torch.zeros(anchor_where_batch.shape[0], device=device, dtype=dtype)
points_src_anchor = torch.stack([zeros, zeros, points_src[anchor_where_batch, anchor_where_n, 2]], dim=-1) # (anchors, 3)
points_tgt_anchor = torch.stack([zeros, zeros, points_tgt[anchor_where_batch, anchor_where_n, 2]], dim=-1) # (anchors, 3)
points_src_anchored = points_src[anchor_where_batch, :, :] - points_src_anchor[..., None, :] # (anchors, n, 3)
points_tgt_anchored = points_tgt[anchor_where_batch, :, :] - points_tgt_anchor[..., None, :] # (anchors, n, 3)
weight_anchored = weight[anchor_where_batch, :, None].expand(-1, -1, 3) # (anchors, n, 3)
# Solve optimal scale and shift for each anchor
MAX_ELEMENTS = 2 ** 20
scale, loss, index = split_batch_fwd(align, MAX_ELEMENTS // n, points_src_anchored.flatten(-2), points_tgt_anchored.flatten(-2), weight_anchored.flatten(-2), trunc) # (anchors,)
loss, index_anchor = scatter_min(size=batch_size, dim=0, index=anchor_where_batch, src=loss) # (batch_size,)
# Reproduce by indexing for shorter compute graph
index_2 = index[index_anchor] # (batch_size,) [0, 3n)
index_1 = anchor_where_n[index_anchor] * 3 + index_2 % 3 # (batch_size,) [0, 3n)
zeros = torch.zeros((batch_size, n), device=device, dtype=dtype)
points_tgt_00z, points_src_00z = torch.stack([zeros, zeros, points_tgt[..., 2]], dim=-1), torch.stack([zeros, zeros, points_src[..., 2]], dim=-1)
tgt_1, src_1 = torch.gather(points_tgt_00z.flatten(-2), dim=1, index=index_1[..., None]).squeeze(-1), torch.gather(points_src_00z.flatten(-2), dim=1, index=index_1[..., None]).squeeze(-1)
tgt_2, src_2 = torch.gather(points_tgt.flatten(-2), dim=1, index=index_2[..., None]).squeeze(-1), torch.gather(points_src.flatten(-2), dim=1, index=index_2[..., None]).squeeze(-1)
scale = (tgt_2 - tgt_1) / torch.where(src_2 != src_1, src_2 - src_1, 1.0)
shift = torch.gather(points_tgt_00z, dim=1, index=(index_1 // 3)[..., None, None].expand(-1, -1, 3)).squeeze(-2) - scale[..., None] * torch.gather(points_src_00z, dim=1, index=(index_1 // 3)[..., None, None].expand(-1, -1, 3)).squeeze(-2)
scale, shift = scale.reshape(batch_shape), shift.reshape(*batch_shape, 3)
return scale, shift
def align_points_scale_xyz_shift(points_src: torch.Tensor, points_tgt: torch.Tensor, weight: Optional[torch.Tensor], trunc: Optional[Union[float, torch.Tensor]] = None, max_iters: int = 30, eps: float = 1e-6):
"""
Align `points_src` to `points_tgt` with respect to a shared xyz scale and z shift.
It is similar to `align_affine` but scale and shift are applied to different dimensions.
### Parameters:
- `points_src: torch.Tensor` of shape (..., N, 3)
- `points_tgt: torch.Tensor` of shape (..., N, 3)
- `weights: torch.Tensor` of shape (..., N)
### Returns:
- `scale: torch.Tensor` of shape (...).
- `shift: torch.Tensor` of shape (..., 3)
"""
dtype, device = points_src.dtype, points_src.device
# Flatten batch dimensions for simplicity
batch_shape, n = points_src.shape[:-2], points_src.shape[-2]
batch_size = math.prod(batch_shape)
points_src, points_tgt, weight = points_src.reshape(batch_size, n, 3), points_tgt.reshape(batch_size, n, 3), weight.reshape(batch_size, n)
# Take anchors
anchor_where_batch, anchor_where_n = torch.where(weight > 0)
with torch.no_grad():
points_src_anchor = points_src[anchor_where_batch, anchor_where_n] # (anchors, 3)
points_tgt_anchor = points_tgt[anchor_where_batch, anchor_where_n] # (anchors, 3)
points_src_anchored = points_src[anchor_where_batch, :, :] - points_src_anchor[..., None, :] # (anchors, n, 3)
points_tgt_anchored = points_tgt[anchor_where_batch, :, :] - points_tgt_anchor[..., None, :] # (anchors, n, 3)
weight_anchored = weight[anchor_where_batch, :, None].expand(-1, -1, 3) # (anchors, n, 3)
# Solve optimal scale and shift for each anchor
MAX_ELEMENTS = 2 ** 20
scale, loss, index = split_batch_fwd(align, MAX_ELEMENTS // 2, points_src_anchored.flatten(-2), points_tgt_anchored.flatten(-2), weight_anchored.flatten(-2), trunc) # (anchors,)
# Get optimal scale and shift for each batch element
loss, index_anchor = scatter_min(size=batch_size, dim=0, index=anchor_where_batch, src=loss) # (batch_size,)
index_2 = index[index_anchor] # (batch_size,) [0, 3n)
index_1 = anchor_where_n[index_anchor] * 3 + index_2 % 3 # (batch_size,) [0, 3n)
src_1, tgt_1 = torch.gather(points_src.flatten(-2), dim=1, index=index_1[..., None]).squeeze(-1), torch.gather(points_tgt.flatten(-2), dim=1, index=index_1[..., None]).squeeze(-1)
src_2, tgt_2 = torch.gather(points_src.flatten(-2), dim=1, index=index_2[..., None]).squeeze(-1), torch.gather(points_tgt.flatten(-2), dim=1, index=index_2[..., None]).squeeze(-1)
scale = (tgt_2 - tgt_1) / torch.where(src_2 != src_1, src_2 - src_1, 1.0)
shift = torch.gather(points_tgt, dim=1, index=(index_1 // 3)[..., None, None].expand(-1, -1, 3)).squeeze(-2) - scale[..., None] * torch.gather(points_src, dim=1, index=(index_1 // 3)[..., None, None].expand(-1, -1, 3)).squeeze(-2)
scale, shift = scale.reshape(batch_shape), shift.reshape(*batch_shape, 3)
return scale, shift
def align_points_z_shift(points_src: torch.Tensor, points_tgt: torch.Tensor, weight: Optional[torch.Tensor], trunc: Optional[Union[float, torch.Tensor]] = None, max_iters: int = 30, eps: float = 1e-6):
"""
Align `points_src` to `points_tgt` with respect to a Z-axis shift.
### Parameters:
- `points_src: torch.Tensor` of shape (..., N, 3)
- `points_tgt: torch.Tensor` of shape (..., N, 3)
- `weights: torch.Tensor` of shape (..., N)
### Returns:
- `scale: torch.Tensor` of shape (...).
- `shift: torch.Tensor` of shape (..., 3)
"""
dtype, device = points_src.dtype, points_src.device
shift, _, _ = align(torch.ones_like(points_src[..., 2]), points_tgt[..., 2] - points_src[..., 2], weight, trunc)
shift = torch.stack([torch.zeros_like(shift), torch.zeros_like(shift), shift], dim=-1)
return shift
def align_points_xyz_shift(points_src: torch.Tensor, points_tgt: torch.Tensor, weight: Optional[torch.Tensor], trunc: Optional[Union[float, torch.Tensor]] = None, max_iters: int = 30, eps: float = 1e-6):
"""
Align `points_src` to `points_tgt` with respect to a Z-axis shift.
### Parameters:
- `points_src: torch.Tensor` of shape (..., N, 3)
- `points_tgt: torch.Tensor` of shape (..., N, 3)
- `weights: torch.Tensor` of shape (..., N)
### Returns:
- `scale: torch.Tensor` of shape (...).
- `shift: torch.Tensor` of shape (..., 3)
"""
dtype, device = points_src.dtype, points_src.device
shift, _, _ = align(torch.ones_like(points_src).swapaxes(-2, -1), (points_tgt - points_src).swapaxes(-2, -1), weight[..., None, :], trunc)
return shift
def align_affine_lstsq(x: torch.Tensor, y: torch.Tensor, w: torch.Tensor = None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Solve `min sum_i w_i * (a * x_i + b - y_i ) ^ 2`, where `a` and `b` are scalars, with respect to `a` and `b` using least squares.
### Parameters:
- `x: torch.Tensor` of shape (..., N)
- `y: torch.Tensor` of shape (..., N)
- `w: torch.Tensor` of shape (..., N)
### Returns:
- `a: torch.Tensor` of shape (...,)
- `b: torch.Tensor` of shape (...,)
"""
w_sqrt = torch.ones_like(x) if w is None else w.sqrt()
A = torch.stack([w_sqrt * x, torch.ones_like(x)], dim=-1)
B = (w_sqrt * y)[..., None]
a, b = torch.linalg.lstsq(A, B)[0].squeeze(-1).unbind(-1)
return a, b |