xiaoyuxi
add readme
2daa5a4
raw
history blame
43.8 kB
import gradio as gr
import os
import json
import numpy as np
import cv2
import base64
import time
import tempfile
import shutil
import glob
import threading
import subprocess
import struct
import zlib
from pathlib import Path
from einops import rearrange
from typing import List, Tuple, Union
try:
import spaces
except ImportError:
# Fallback for local development
def spaces(func):
return func
import torch
import logging
from concurrent.futures import ThreadPoolExecutor
import atexit
import uuid
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import custom modules with error handling
try:
from app_3rd.sam_utils.inference import SamPredictor, get_sam_predictor, run_inference
from app_3rd.spatrack_utils.infer_track import get_tracker_predictor, run_tracker, get_points_on_a_grid
except ImportError as e:
logger.error(f"Failed to import custom modules: {e}")
raise
# Constants
MAX_FRAMES = 80
COLORS = [(0, 0, 255), (0, 255, 255)] # BGR: Red for negative, Yellow for positive
MARKERS = [1, 5] # Cross for negative, Star for positive
MARKER_SIZE = 8
# Thread pool for delayed deletion
thread_pool_executor = ThreadPoolExecutor(max_workers=2)
def delete_later(path: Union[str, os.PathLike], delay: int = 600):
"""Delete file or directory after specified delay (default 10 minutes)"""
def _delete():
try:
if os.path.isfile(path):
os.remove(path)
elif os.path.isdir(path):
shutil.rmtree(path)
except Exception as e:
logger.warning(f"Failed to delete {path}: {e}")
def _wait_and_delete():
time.sleep(delay)
_delete()
thread_pool_executor.submit(_wait_and_delete)
atexit.register(_delete)
def create_user_temp_dir():
"""Create a unique temporary directory for each user session"""
session_id = str(uuid.uuid4())[:8] # Short unique ID
temp_dir = os.path.join("temp_local", f"session_{session_id}")
os.makedirs(temp_dir, exist_ok=True)
# Schedule deletion after 10 minutes
delete_later(temp_dir, delay=600)
return temp_dir
from huggingface_hub import hf_hub_download
# init the model
os.environ["VGGT_DIR"] = hf_hub_download("Yuxihenry/SpatialTrackerCkpts", "spatrack_front.pth") #, force_download=True)
if os.environ.get("VGGT_DIR", None) is not None:
from models.vggt.vggt.models.vggt_moe import VGGT_MoE
from models.vggt.vggt.utils.load_fn import preprocess_image
vggt_model = VGGT_MoE()
vggt_model.load_state_dict(torch.load(os.environ.get("VGGT_DIR")), strict=False)
vggt_model.eval()
vggt_model = vggt_model.to("cuda")
# Global model initialization
print("🚀 Initializing local models...")
tracker_model, _ = get_tracker_predictor(".", vo_points=756)
predictor = get_sam_predictor()
print("✅ Models loaded successfully!")
gr.set_static_paths(paths=[Path.cwd().absolute()/"_viz"])
@spaces.GPU
def gpu_run_inference(predictor_arg, image, points, boxes):
"""GPU-accelerated SAM inference"""
if predictor_arg is None:
print("Initializing SAM predictor inside GPU function...")
predictor_arg = get_sam_predictor(predictor=predictor)
# Ensure predictor is on GPU
try:
if hasattr(predictor_arg, 'model'):
predictor_arg.model = predictor_arg.model.cuda()
elif hasattr(predictor_arg, 'sam'):
predictor_arg.sam = predictor_arg.sam.cuda()
elif hasattr(predictor_arg, 'to'):
predictor_arg = predictor_arg.to('cuda')
if hasattr(image, 'cuda'):
image = image.cuda()
except Exception as e:
print(f"Warning: Could not move predictor to GPU: {e}")
return run_inference(predictor_arg, image, points, boxes)
@spaces.GPU
def gpu_run_tracker(tracker_model_arg, tracker_viser_arg, temp_dir, video_name, grid_size, vo_points, fps, mode="offline"):
"""GPU-accelerated tracking"""
import torchvision.transforms as T
import decord
if tracker_model_arg is None or tracker_viser_arg is None:
print("Initializing tracker models inside GPU function...")
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
tracker_model_arg, tracker_viser_arg = get_tracker_predictor(out_dir, vo_points=vo_points, tracker_model=tracker_model)
# Setup paths
video_path = os.path.join(temp_dir, f"{video_name}.mp4")
mask_path = os.path.join(temp_dir, f"{video_name}.png")
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
# Load video using decord
video_reader = decord.VideoReader(video_path)
video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2)
# Resize to ensure minimum side is 336
h, w = video_tensor.shape[2:]
scale = max(224 / h, 224 / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
video_tensor = video_tensor[::fps].float()[:MAX_FRAMES]
# Move to GPU
video_tensor = video_tensor.cuda()
print(f"Video tensor shape: {video_tensor.shape}, device: {video_tensor.device}")
depth_tensor = None
intrs = None
extrs = None
data_npz_load = {}
# run vggt
if os.environ.get("VGGT_DIR", None) is not None:
# process the image tensor
video_tensor = preprocess_image(video_tensor)[None]
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
# Predict attributes including cameras, depth maps, and point maps.
predictions = vggt_model(video_tensor.cuda()/255)
extrinsic, intrinsic = predictions["poses_pred"], predictions["intrs"]
depth_map, depth_conf = predictions["points_map"][..., 2], predictions["unc_metric"]
depth_tensor = depth_map.squeeze().cpu().numpy()
extrs = np.eye(4)[None].repeat(len(depth_tensor), axis=0)
extrs = extrinsic.squeeze().cpu().numpy()
intrs = intrinsic.squeeze().cpu().numpy()
video_tensor = video_tensor.squeeze()
#NOTE: 20% of the depth is not reliable
# threshold = depth_conf.squeeze()[0].view(-1).quantile(0.6).item()
unc_metric = depth_conf.squeeze().cpu().numpy() > 0.5
# Load and process mask
if os.path.exists(mask_path):
mask = cv2.imread(mask_path)
mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2]))
mask = mask.sum(axis=-1)>0
else:
mask = np.ones_like(video_tensor[0,0].cpu().numpy())>0
grid_size = 10
# Get frame dimensions and create grid points
frame_H, frame_W = video_tensor.shape[2:]
grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cuda")
# Sample mask values at grid points and filter
if os.path.exists(mask_path):
grid_pts_int = grid_pts[0].long()
mask_values = mask[grid_pts_int.cpu()[...,1], grid_pts_int.cpu()[...,0]]
grid_pts = grid_pts[:, mask_values]
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].cpu().numpy()
print(f"Query points shape: {query_xyt.shape}")
# Run model inference
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
(
c2w_traj, intrs, point_map, conf_depth,
track3d_pred, track2d_pred, vis_pred, conf_pred, video
) = tracker_model_arg.forward(video_tensor, depth=depth_tensor,
intrs=intrs, extrs=extrs,
queries=query_xyt,
fps=1, full_point=False, iters_track=4,
query_no_BA=True, fixed_cam=False, stage=1, unc_metric=unc_metric,
support_frame=len(video_tensor)-1, replace_ratio=0.2)
# Resize results to avoid large I/O
max_size = 224
h, w = video.shape[2:]
scale = min(max_size / h, max_size / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video = T.Resize((new_h, new_w))(video)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
point_map = T.Resize((new_h, new_w))(point_map)
track2d_pred[...,:2] = track2d_pred[...,:2] * scale
intrs[:,:2,:] = intrs[:,:2,:] * scale
conf_depth = T.Resize((new_h, new_w))(conf_depth)
# Visualize tracks
tracker_viser_arg.visualize(video=video[None],
tracks=track2d_pred[None][...,:2],
visibility=vis_pred[None],filename="test")
# Save in tapip3d format
data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy()
data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy()
data_npz_load["intrinsics"] = intrs.cpu().numpy()
data_npz_load["depths"] = point_map[:,2,...].cpu().numpy()
data_npz_load["video"] = (video_tensor).cpu().numpy()/255
data_npz_load["visibs"] = vis_pred.cpu().numpy()
data_npz_load["confs"] = conf_pred.cpu().numpy()
data_npz_load["confs_depth"] = conf_depth.cpu().numpy()
np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load)
return None
def compress_and_write(filename, header, blob):
header_bytes = json.dumps(header).encode("utf-8")
header_len = struct.pack("<I", len(header_bytes))
with open(filename, "wb") as f:
f.write(header_len)
f.write(header_bytes)
f.write(blob)
def process_point_cloud_data(npz_file, width=256, height=192, fps=4):
fixed_size = (width, height)
data = np.load(npz_file)
extrinsics = data["extrinsics"]
intrinsics = data["intrinsics"]
trajs = data["coords"]
T, C, H, W = data["video"].shape
fx = intrinsics[0, 0, 0]
fy = intrinsics[0, 1, 1]
fov_y = 2 * np.arctan(H / (2 * fy)) * (180 / np.pi)
fov_x = 2 * np.arctan(W / (2 * fx)) * (180 / np.pi)
original_aspect_ratio = (W / fx) / (H / fy)
rgb_video = (rearrange(data["video"], "T C H W -> T H W C") * 255).astype(np.uint8)
rgb_video = np.stack([cv2.resize(frame, fixed_size, interpolation=cv2.INTER_AREA)
for frame in rgb_video])
depth_video = data["depths"].astype(np.float32)
if "confs_depth" in data.keys():
confs = (data["confs_depth"].astype(np.float32) > 0.5).astype(np.float32)
depth_video = depth_video * confs
depth_video = np.stack([cv2.resize(frame, fixed_size, interpolation=cv2.INTER_NEAREST)
for frame in depth_video])
scale_x = fixed_size[0] / W
scale_y = fixed_size[1] / H
intrinsics = intrinsics.copy()
intrinsics[:, 0, :] *= scale_x
intrinsics[:, 1, :] *= scale_y
min_depth = float(depth_video.min()) * 0.8
max_depth = float(depth_video.max()) * 1.5
depth_normalized = (depth_video - min_depth) / (max_depth - min_depth)
depth_int = (depth_normalized * ((1 << 16) - 1)).astype(np.uint16)
depths_rgb = np.zeros((T, fixed_size[1], fixed_size[0], 3), dtype=np.uint8)
depths_rgb[:, :, :, 0] = (depth_int & 0xFF).astype(np.uint8)
depths_rgb[:, :, :, 1] = ((depth_int >> 8) & 0xFF).astype(np.uint8)
first_frame_inv = np.linalg.inv(extrinsics[0])
normalized_extrinsics = np.array([first_frame_inv @ ext for ext in extrinsics])
normalized_trajs = np.zeros_like(trajs)
for t in range(T):
homogeneous_trajs = np.concatenate([trajs[t], np.ones((trajs.shape[1], 1))], axis=1)
transformed_trajs = (first_frame_inv @ homogeneous_trajs.T).T
normalized_trajs[t] = transformed_trajs[:, :3]
arrays = {
"rgb_video": rgb_video,
"depths_rgb": depths_rgb,
"intrinsics": intrinsics,
"extrinsics": normalized_extrinsics,
"inv_extrinsics": np.linalg.inv(normalized_extrinsics),
"trajectories": normalized_trajs.astype(np.float32),
"cameraZ": 0.0
}
header = {}
blob_parts = []
offset = 0
for key, arr in arrays.items():
arr = np.ascontiguousarray(arr)
arr_bytes = arr.tobytes()
header[key] = {
"dtype": str(arr.dtype),
"shape": arr.shape,
"offset": offset,
"length": len(arr_bytes)
}
blob_parts.append(arr_bytes)
offset += len(arr_bytes)
raw_blob = b"".join(blob_parts)
compressed_blob = zlib.compress(raw_blob, level=9)
header["meta"] = {
"depthRange": [min_depth, max_depth],
"totalFrames": int(T),
"resolution": fixed_size,
"baseFrameRate": fps,
"numTrajectoryPoints": normalized_trajs.shape[1],
"fov": float(fov_y),
"fov_x": float(fov_x),
"original_aspect_ratio": float(original_aspect_ratio),
"fixed_aspect_ratio": float(fixed_size[0]/fixed_size[1])
}
compress_and_write('./_viz/data.bin', header, compressed_blob)
with open('./_viz/data.bin', "rb") as f:
encoded_blob = base64.b64encode(f.read()).decode("ascii")
os.unlink('./_viz/data.bin')
random_path = f'./_viz/_{time.time()}.html'
with open('./_viz/viz_template.html') as f:
html_template = f.read()
html_out = html_template.replace(
"<head>",
f"<head>\n<script>window.embeddedBase64 = `{encoded_blob}`;</script>"
)
with open(random_path,'w') as f:
f.write(html_out)
return random_path
def numpy_to_base64(arr):
"""Convert numpy array to base64 string"""
return base64.b64encode(arr.tobytes()).decode('utf-8')
def base64_to_numpy(b64_str, shape, dtype):
"""Convert base64 string back to numpy array"""
return np.frombuffer(base64.b64decode(b64_str), dtype=dtype).reshape(shape)
def get_video_name(video_path):
"""Extract video name without extension"""
return os.path.splitext(os.path.basename(video_path))[0]
def extract_first_frame(video_path):
"""Extract first frame from video file"""
try:
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
cap.release()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
else:
return None
except Exception as e:
print(f"Error extracting first frame: {e}")
return None
def handle_video_upload(video):
"""Handle video upload and extract first frame"""
if video is None:
return (None, None, [],
gr.update(value=50),
gr.update(value=756),
gr.update(value=3))
# Create user-specific temporary directory
user_temp_dir = create_user_temp_dir()
# Get original video name and copy to temp directory
if isinstance(video, str):
video_name = get_video_name(video)
video_path = os.path.join(user_temp_dir, f"{video_name}.mp4")
shutil.copy(video, video_path)
else:
video_name = get_video_name(video.name)
video_path = os.path.join(user_temp_dir, f"{video_name}.mp4")
with open(video_path, 'wb') as f:
f.write(video.read())
print(f"📁 Video saved to: {video_path}")
# Extract first frame
frame = extract_first_frame(video_path)
if frame is None:
return (None, None, [],
gr.update(value=50),
gr.update(value=756),
gr.update(value=3))
# Resize frame to have minimum side length of 336
h, w = frame.shape[:2]
scale = 336 / min(h, w)
new_h, new_w = int(h * scale)//2*2, int(w * scale)//2*2
frame = cv2.resize(frame, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
# Store frame data with temp directory info
frame_data = {
'data': numpy_to_base64(frame),
'shape': frame.shape,
'dtype': str(frame.dtype),
'temp_dir': user_temp_dir,
'video_name': video_name,
'video_path': video_path
}
# Get video-specific settings
print(f"🎬 Video path: '{video}' -> Video name: '{video_name}'")
grid_size_val, vo_points_val, fps_val = get_video_settings(video_name)
print(f"🎬 Video settings for '{video_name}': grid_size={grid_size_val}, vo_points={vo_points_val}, fps={fps_val}")
return (json.dumps(frame_data), frame, [],
gr.update(value=grid_size_val),
gr.update(value=vo_points_val),
gr.update(value=fps_val))
def save_masks(o_masks, video_name, temp_dir):
"""Save binary masks to files in user-specific temp directory"""
o_files = []
for mask, _ in o_masks:
o_mask = np.uint8(mask.squeeze() * 255)
o_file = os.path.join(temp_dir, f"{video_name}.png")
cv2.imwrite(o_file, o_mask)
o_files.append(o_file)
return o_files
def select_point(original_img: str, sel_pix: list, point_type: str, evt: gr.SelectData):
"""Handle point selection for SAM"""
if original_img is None:
return None, []
try:
# Convert stored image data back to numpy array
frame_data = json.loads(original_img)
original_img_array = base64_to_numpy(frame_data['data'], frame_data['shape'], frame_data['dtype'])
temp_dir = frame_data.get('temp_dir', 'temp_local')
video_name = frame_data.get('video_name', 'video')
# Create a display image for visualization
display_img = original_img_array.copy()
new_sel_pix = sel_pix.copy() if sel_pix else []
new_sel_pix.append((evt.index, 1 if point_type == 'positive_point' else 0))
print(f"🎯 Running SAM inference for point: {evt.index}, type: {point_type}")
# Run SAM inference
o_masks = gpu_run_inference(None, original_img_array, new_sel_pix, [])
# Draw points on display image
for point, label in new_sel_pix:
cv2.drawMarker(display_img, point, COLORS[label], markerType=MARKERS[label], markerSize=MARKER_SIZE, thickness=2)
# Draw mask overlay on display image
if o_masks:
mask = o_masks[0][0]
overlay = display_img.copy()
overlay[mask.squeeze()!=0] = [20, 60, 200] # Light blue
display_img = cv2.addWeighted(overlay, 0.6, display_img, 0.4, 0)
# Save mask for tracking
save_masks(o_masks, video_name, temp_dir)
print(f"✅ Mask saved for video: {video_name}")
return display_img, new_sel_pix
except Exception as e:
print(f"❌ Error in select_point: {e}")
return None, []
def reset_points(original_img: str, sel_pix):
"""Reset all points and clear the mask"""
if original_img is None:
return None, []
try:
# Convert stored image data back to numpy array
frame_data = json.loads(original_img)
original_img_array = base64_to_numpy(frame_data['data'], frame_data['shape'], frame_data['dtype'])
temp_dir = frame_data.get('temp_dir', 'temp_local')
# Create a display image (just the original image)
display_img = original_img_array.copy()
# Clear all points
new_sel_pix = []
# Clear any existing masks
for mask_file in glob.glob(os.path.join(temp_dir, "*.png")):
try:
os.remove(mask_file)
except Exception as e:
logger.warning(f"Failed to remove mask file {mask_file}: {e}")
print("🔄 Points and masks reset")
return display_img, new_sel_pix
except Exception as e:
print(f"❌ Error in reset_points: {e}")
return None, []
def launch_viz(grid_size, vo_points, fps, original_image_state, mode="offline"):
"""Launch visualization with user-specific temp directory"""
if original_image_state is None:
return None, None, None
try:
# Get user's temp directory from stored frame data
frame_data = json.loads(original_image_state)
temp_dir = frame_data.get('temp_dir', 'temp_local')
video_name = frame_data.get('video_name', 'video')
print(f"🚀 Starting tracking for video: {video_name}")
print(f"📊 Parameters: grid_size={grid_size}, vo_points={vo_points}, fps={fps}")
# Check for mask files
mask_files = glob.glob(os.path.join(temp_dir, "*.png"))
video_files = glob.glob(os.path.join(temp_dir, "*.mp4"))
if not video_files:
print("❌ No video file found")
return "❌ Error: No video file found", None, None
video_path = video_files[0]
mask_path = mask_files[0] if mask_files else None
# Run tracker
print("🎯 Running tracker...")
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
gpu_run_tracker(None, None, temp_dir, video_name, grid_size, vo_points, fps, mode=mode)
# Process results
npz_path = os.path.join(out_dir, "result.npz")
track2d_video = os.path.join(out_dir, "test_pred_track.mp4")
if os.path.exists(npz_path):
print("📊 Processing 3D visualization...")
html_path = process_point_cloud_data(npz_path)
# Schedule deletion of generated files
delete_later(html_path, delay=600)
if os.path.exists(track2d_video):
delete_later(track2d_video, delay=600)
delete_later(npz_path, delay=600)
# Create iframe HTML
iframe_html = f"""
<div style='border: 3px solid #667eea; border-radius: 10px;
background: #f8f9ff; height: 650px; width: 100%;
box-shadow: 0 8px 32px rgba(102, 126, 234, 0.3);
margin: 0; padding: 0; box-sizing: border-box; overflow: hidden;'>
<iframe id="viz_iframe" src="/gradio_api/file={html_path}"
width="100%" height="650" frameborder="0"
style="border: none; display: block; width: 100%; height: 650px;
margin: 0; padding: 0; border-radius: 7px;">
</iframe>
</div>
"""
print("✅ Tracking completed successfully!")
return iframe_html, track2d_video if os.path.exists(track2d_video) else None, html_path
else:
print("❌ Tracking failed - no results generated")
return "❌ Error: Tracking failed to generate results", None, None
except Exception as e:
print(f"❌ Error in launch_viz: {e}")
return f"❌ Error: {str(e)}", None, None
def clear_all():
"""Clear all buffers and temporary files"""
return (None, None, [],
gr.update(value=50),
gr.update(value=756),
gr.update(value=3))
def clear_all_with_download():
"""Clear all buffers including both download components"""
return (None, None, [],
gr.update(value=50),
gr.update(value=756),
gr.update(value=3),
None, # tracking_video_download
None) # HTML download component
def get_video_settings(video_name):
"""Get video-specific settings based on video name"""
video_settings = {
"running": (50, 512, 2),
"backpack": (40, 600, 2),
"kitchen": (60, 800, 3),
"pillow": (35, 500, 2),
"handwave": (35, 500, 8),
"hockey": (45, 700, 2),
"drifting": (35, 1000, 6),
"basketball": (45, 1500, 5),
"ken_block_0": (45, 700, 2),
"ego_kc1": (45, 500, 4),
"vertical_place": (45, 500, 3),
"ego_teaser": (45, 1200, 10),
"robot_unitree": (45, 500, 4),
"robot_3": (35, 400, 5),
"teleop2": (45, 256, 7),
"pusht": (45, 256, 10),
"cinema_0": (45, 356, 5),
"cinema_1": (45, 756, 3),
"robot1": (45, 600, 2),
"robot2": (45, 600, 2),
"protein": (45, 600, 2),
"kitchen_egocentric": (45, 600, 2),
}
return video_settings.get(video_name, (50, 756, 3))
# Create the Gradio interface
print("🎨 Creating Gradio interface...")
with gr.Blocks(
theme=gr.themes.Soft(),
title="🎯 [SpatialTracker V2](https://github.com/henry123-boy/SpaTrackerV2)",
css="""
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
}
.gr-button {
margin: 5px;
}
.gr-form {
background: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
/* 移除 gr.Group 的默认灰色背景 */
.gr-form {
background: transparent !important;
border: none !important;
box-shadow: none !important;
padding: 0 !important;
}
/* 固定3D可视化器尺寸 */
#viz_container {
height: 650px !important;
min-height: 650px !important;
max-height: 650px !important;
width: 100% !important;
margin: 0 !important;
padding: 0 !important;
overflow: hidden !important;
}
#viz_container > div {
height: 650px !important;
min-height: 650px !important;
max-height: 650px !important;
width: 100% !important;
margin: 0 !important;
padding: 0 !important;
box-sizing: border-box !important;
}
#viz_container iframe {
height: 650px !important;
min-height: 650px !important;
max-height: 650px !important;
width: 100% !important;
border: none !important;
display: block !important;
margin: 0 !important;
padding: 0 !important;
box-sizing: border-box !important;
}
/* 固定视频上传组件高度 */
.gr-video {
height: 300px !important;
min-height: 300px !important;
max-height: 300px !important;
}
.gr-video video {
height: 260px !important;
max-height: 260px !important;
object-fit: contain !important;
background: #f8f9fa;
}
.gr-video .gr-video-player {
height: 260px !important;
max-height: 260px !important;
}
/* 强力移除examples的灰色背景 - 使用更通用的选择器 */
.horizontal-examples,
.horizontal-examples > *,
.horizontal-examples * {
background: transparent !important;
background-color: transparent !important;
border: none !important;
}
/* Examples组件水平滚动样式 */
.horizontal-examples [data-testid="examples"] {
background: transparent !important;
background-color: transparent !important;
}
.horizontal-examples [data-testid="examples"] > div {
background: transparent !important;
background-color: transparent !important;
overflow-x: auto !important;
overflow-y: hidden !important;
scrollbar-width: thin;
scrollbar-color: #667eea transparent;
padding: 0 !important;
margin-top: 10px;
border: none !important;
}
.horizontal-examples [data-testid="examples"] table {
display: flex !important;
flex-wrap: nowrap !important;
min-width: max-content !important;
gap: 15px !important;
padding: 10px 0;
background: transparent !important;
border: none !important;
}
.horizontal-examples [data-testid="examples"] tbody {
display: flex !important;
flex-direction: row !important;
flex-wrap: nowrap !important;
gap: 15px !important;
background: transparent !important;
}
.horizontal-examples [data-testid="examples"] tr {
display: flex !important;
flex-direction: column !important;
min-width: 160px !important;
max-width: 160px !important;
margin: 0 !important;
background: white !important;
border-radius: 12px;
box-shadow: 0 3px 12px rgba(0,0,0,0.12);
transition: all 0.3s ease;
cursor: pointer;
overflow: hidden;
border: none !important;
}
.horizontal-examples [data-testid="examples"] tr:hover {
transform: translateY(-4px);
box-shadow: 0 8px 20px rgba(102, 126, 234, 0.25);
}
.horizontal-examples [data-testid="examples"] td {
text-align: center !important;
padding: 0 !important;
border: none !important;
background: transparent !important;
}
.horizontal-examples [data-testid="examples"] td:first-child {
padding: 0 !important;
background: transparent !important;
}
.horizontal-examples [data-testid="examples"] video {
border-radius: 8px 8px 0 0 !important;
width: 100% !important;
height: 90px !important;
object-fit: cover !important;
background: #f8f9fa !important;
}
.horizontal-examples [data-testid="examples"] td:last-child {
font-size: 11px !important;
font-weight: 600 !important;
color: #333 !important;
padding: 8px 12px !important;
background: linear-gradient(135deg, #f8f9ff 0%, #e6f3ff 100%) !important;
border-radius: 0 0 8px 8px;
}
/* 滚动条样式 */
.horizontal-examples [data-testid="examples"] > div::-webkit-scrollbar {
height: 8px;
}
.horizontal-examples [data-testid="examples"] > div::-webkit-scrollbar-track {
background: transparent;
border-radius: 4px;
}
.horizontal-examples [data-testid="examples"] > div::-webkit-scrollbar-thumb {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 4px;
}
.horizontal-examples [data-testid="examples"] > div::-webkit-scrollbar-thumb:hover {
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%);
}
"""
) as demo:
# Add prominent main title
gr.Markdown("""
# ✨ SpatialTrackerV2
Welcome to [SpatialTracker V2](https://github.com/henry123-boy/SpaTrackerV2)! This interface allows you to track any pixels in 3D using our model.
For full information, please refer to the [official website](https://spatialtracker.github.io/), and [ICCV2025 paper](https://github.com/henry123-boy/SpaTrackerV2).
Please cite our paper and give us a star 🌟 if you find this project useful!
**⚡ Quick Start:** Upload video → Click "Start Tracking Now!"
**🔬 Advanced Usage with SAM:**
1. Upload a video file or select from examples below
2. Expand "Manual Point Selection" to click on specific objects for SAM-guided tracking
3. Adjust tracking parameters for optimal performance
4. Click "Start Tracking Now!" to begin 3D tracking with SAM guidance
""")
# Status indicator
gr.Markdown("**Status:** 🟢 Local Processing Mode")
# Main content area - video upload left, 3D visualization right
with gr.Row():
with gr.Column(scale=1):
# Video upload section
gr.Markdown("### 📂 Select Video")
# Define video_input here so it can be referenced in examples
video_input = gr.Video(
label="Upload Video or Select Example",
format="mp4",
height=250 # Matched height with 3D viz
)
# Traditional examples but with horizontal scroll styling
gr.Markdown("🎨**Examples:** (scroll horizontally to see all videos)")
with gr.Row(elem_classes=["horizontal-examples"]):
# Horizontal video examples with slider
# gr.HTML("<div style='margin-top: 5px;'></div>")
gr.Examples(
examples=[
["./examples/robot1.mp4"],
["./examples/robot2.mp4"],
["./examples/protein.mp4"],
["./examples/kitchen_egocentric.mp4"],
["./examples/hockey.mp4"],
["./examples/running.mp4"],
["./examples/robot_3.mp4"],
["./examples/backpack.mp4"],
["./examples/kitchen.mp4"],
["./examples/pillow.mp4"],
["./examples/handwave.mp4"],
["./examples/drifting.mp4"],
["./examples/basketball.mp4"],
["./examples/ken_block_0.mp4"],
["./examples/ego_kc1.mp4"],
["./examples/vertical_place.mp4"],
["./examples/ego_teaser.mp4"],
["./examples/robot_unitree.mp4"],
["./examples/teleop2.mp4"],
["./examples/pusht.mp4"],
["./examples/cinema_0.mp4"],
["./examples/cinema_1.mp4"],
],
inputs=[video_input],
outputs=[video_input],
fn=None,
cache_examples=False,
label="",
examples_per_page=6 # Show 6 examples per page so they can wrap to multiple rows
)
with gr.Column(scale=2):
# 3D Visualization - wider and taller to match left side
with gr.Group():
gr.Markdown("### 🌐 3D Trajectory Visualization")
viz_html = gr.HTML(
label="3D Trajectory Visualization",
value="""
<div style='border: 3px solid #667eea; border-radius: 10px;
background: linear-gradient(135deg, #f8f9ff 0%, #e6f3ff 100%);
text-align: center; height: 650px; display: flex;
flex-direction: column; justify-content: center; align-items: center;
box-shadow: 0 4px 16px rgba(102, 126, 234, 0.15);
margin: 0; padding: 20px; box-sizing: border-box;'>
<div style='font-size: 56px; margin-bottom: 25px;'>🌐</div>
<h3 style='color: #667eea; margin-bottom: 18px; font-size: 28px; font-weight: 600;'>
3D Trajectory Visualization
</h3>
<p style='color: #666; font-size: 18px; line-height: 1.6; max-width: 550px; margin-bottom: 30px;'>
Track any pixels in 3D space with camera motion
</p>
<div style='background: rgba(102, 126, 234, 0.1); border-radius: 30px;
padding: 15px 30px; border: 1px solid rgba(102, 126, 234, 0.2);'>
<span style='color: #667eea; font-weight: 600; font-size: 16px;'>
⚡ Powered by SpatialTracker V2
</span>
</div>
</div>
""",
elem_id="viz_container"
)
# Start button section - below video area
with gr.Row():
with gr.Column(scale=3):
launch_btn = gr.Button("🚀 Start Tracking Now!", variant="primary", size="lg")
with gr.Column(scale=1):
clear_all_btn = gr.Button("🗑️ Clear All", variant="secondary", size="sm")
# Tracking parameters section
with gr.Row():
gr.Markdown("### ⚙️ Tracking Parameters")
with gr.Row():
grid_size = gr.Slider(
minimum=10, maximum=100, step=10, value=50,
label="Grid Size", info="Tracking detail level"
)
vo_points = gr.Slider(
minimum=100, maximum=2000, step=50, value=756,
label="VO Points", info="Motion accuracy"
)
fps = gr.Slider(
minimum=1, maximum=20, step=1, value=3,
label="FPS", info="Processing speed"
)
# Advanced Point Selection with SAM - Collapsed by default
with gr.Row():
gr.Markdown("### 🎯 Advanced: Manual Point Selection with SAM")
with gr.Accordion("🔬 SAM Point Selection Controls", open=False):
gr.HTML("""
<div style='margin-bottom: 15px;'>
<ul style='color: #4a5568; font-size: 14px; line-height: 1.6; margin: 0; padding-left: 20px;'>
<li>Click on target objects in the image for SAM-guided segmentation</li>
<li>Positive points: include these areas | Negative points: exclude these areas</li>
<li>Get more accurate 3D tracking results with SAM's powerful segmentation</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column():
interactive_frame = gr.Image(
label="Click to select tracking points with SAM guidance",
type="numpy",
interactive=True,
height=300
)
with gr.Row():
point_type = gr.Radio(
choices=["positive_point", "negative_point"],
value="positive_point",
label="Point Type",
info="Positive: track these areas | Negative: avoid these areas"
)
with gr.Row():
reset_points_btn = gr.Button("🔄 Reset Points", variant="secondary", size="sm")
# Downloads section - hidden but still functional for local processing
with gr.Row(visible=False):
with gr.Column(scale=1):
tracking_video_download = gr.File(
label="📹 Download 2D Tracking Video",
interactive=False,
visible=False
)
with gr.Column(scale=1):
html_download = gr.File(
label="📄 Download 3D Visualization HTML",
interactive=False,
visible=False
)
# GitHub Star Section
gr.HTML("""
<div style='background: linear-gradient(135deg, #e8eaff 0%, #f0f2ff 100%);
border-radius: 8px; padding: 20px; margin: 15px 0;
box-shadow: 0 2px 8px rgba(102, 126, 234, 0.1);
border: 1px solid rgba(102, 126, 234, 0.15);'>
<div style='text-align: center;'>
<h3 style='color: #4a5568; margin: 0 0 10px 0; font-size: 18px; font-weight: 600;'>
⭐ Love SpatialTracker? Give us a Star! ⭐
</h3>
<p style='color: #666; margin: 0 0 15px 0; font-size: 14px; line-height: 1.5;'>
Help us grow by starring our repository on GitHub! Your support means a lot to the community. 🚀
</p>
<a href="https://github.com/henry123-boy/SpaTrackerV2" target="_blank"
style='display: inline-flex; align-items: center; gap: 8px;
background: rgba(102, 126, 234, 0.1); color: #4a5568;
padding: 10px 20px; border-radius: 25px; text-decoration: none;
font-weight: bold; font-size: 14px; border: 1px solid rgba(102, 126, 234, 0.2);
transition: all 0.3s ease;'
onmouseover="this.style.background='rgba(102, 126, 234, 0.15)'; this.style.transform='translateY(-2px)'"
onmouseout="this.style.background='rgba(102, 126, 234, 0.1)'; this.style.transform='translateY(0)'">
<span style='font-size: 16px;'>⭐</span>
Star SpatialTracker V2 on GitHub
</a>
</div>
</div>
""")
# Acknowledgments Section
gr.HTML("""
<div style='background: linear-gradient(135deg, #fff8e1 0%, #fffbf0 100%);
border-radius: 8px; padding: 20px; margin: 15px 0;
box-shadow: 0 2px 8px rgba(255, 193, 7, 0.1);
border: 1px solid rgba(255, 193, 7, 0.2);'>
<div style='text-align: center;'>
<h3 style='color: #5d4037; margin: 0 0 10px 0; font-size: 18px; font-weight: 600;'>
📚 Acknowledgments
</h3>
<p style='color: #5d4037; margin: 0 0 15px 0; font-size: 14px; line-height: 1.5;'>
Our 3D visualizer is adapted from <strong>TAPIP3D</strong>. We thank the authors for their excellent work and contribution to the computer vision community!
</p>
<a href="https://github.com/zbw001/TAPIP3D" target="_blank"
style='display: inline-flex; align-items: center; gap: 8px;
background: rgba(255, 193, 7, 0.15); color: #5d4037;
padding: 10px 20px; border-radius: 25px; text-decoration: none;
font-weight: bold; font-size: 14px; border: 1px solid rgba(255, 193, 7, 0.3);
transition: all 0.3s ease;'
onmouseover="this.style.background='rgba(255, 193, 7, 0.25)'; this.style.transform='translateY(-2px)'"
onmouseout="this.style.background='rgba(255, 193, 7, 0.15)'; this.style.transform='translateY(0)'">
📚 Visit TAPIP3D Repository
</a>
</div>
</div>
""")
# Footer
gr.HTML("""
<div style='text-align: center; margin: 20px 0 10px 0;'>
<span style='font-size: 12px; color: #888; font-style: italic;'>
Powered by SpatialTracker V2 | Built with ❤️ for the Computer Vision Community
</span>
</div>
""")
# Hidden state variables
original_image_state = gr.State(None)
selected_points = gr.State([])
# Event handlers
video_input.change(
fn=handle_video_upload,
inputs=[video_input],
outputs=[original_image_state, interactive_frame, selected_points, grid_size, vo_points, fps]
)
interactive_frame.select(
fn=select_point,
inputs=[original_image_state, selected_points, point_type],
outputs=[interactive_frame, selected_points]
)
reset_points_btn.click(
fn=reset_points,
inputs=[original_image_state, selected_points],
outputs=[interactive_frame, selected_points]
)
clear_all_btn.click(
fn=clear_all_with_download,
outputs=[video_input, interactive_frame, selected_points, grid_size, vo_points, fps, tracking_video_download, html_download]
)
launch_btn.click(
fn=launch_viz,
inputs=[grid_size, vo_points, fps, original_image_state],
outputs=[viz_html, tracking_video_download, html_download]
)
# Launch the interface
if __name__ == "__main__":
print("🌟 Launching SpatialTracker V2 Local Version...")
print("🔗 Running in Local Processing Mode")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
show_error=True
)