from typing import * import click import torch class MGEBaselineInterface: """ Abstract class for model wrapper to uniformize the interface of loading and inference across different models. """ device: torch.device @click.command() @staticmethod def load(*args, **kwargs) -> "MGEBaselineInterface": """ Customized static method to create an instance of the model wrapper from command line arguments. Decorated by `click.command()` """ raise NotImplementedError(f"{type(self).__name__} has not implemented the load method.") def infer(self, image: torch.FloatTensor, intrinsics: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]: """ ### Parameters `image`: [B, 3, H, W] or [3, H, W], RGB values in range [0, 1] `intrinsics`: [B, 3, 3] or [3, 3], camera intrinsics. Optional. ### Returns A dictionary containing: - `points_*`. point map output in OpenCV identity camera space. Supported suffixes: `metric`, `scale_invariant`, `affine_invariant`. - `depth_*`. depth map output Supported suffixes: `metric` (in meters), `scale_invariant`, `affine_invariant`. - `disparity_affine_invariant`. affine disparity map output """ raise NotImplementedError(f"{type(self).__name__} has not implemented the infer method.") def infer_for_evaluation(self, image: torch.FloatTensor, intrinsics: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]: """ If the model has a special evaluation mode, override this method to provide the evaluation mode inference. By default, this method simply calls `infer()`. """ return self.infer(image, intrinsics)