from typing import * import math from collections import namedtuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.types import utils3d from .tools import timeit from .geometry_numpy import solve_optimal_focal_shift, solve_optimal_shift def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor: if w is None: return x.mean(dim=dim, keepdim=keepdim) else: w = w.to(x.dtype) return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps) def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor: if w is None: return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal() else: w = w.to(x.dtype) return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal() def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor: if w is None: return x.add(eps).log().mean(dim=dim).exp() else: w = w.to(x.dtype) return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp() def normalized_view_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor: "UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)" if aspect_ratio is None: aspect_ratio = width / height span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5 span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5 u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device) v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device) u, v = torch.meshgrid(u, v, indexing='xy') uv = torch.stack([u, v], dim=-1) return uv def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor: kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2)) kernel = kernel / kernel.sum() kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size) input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate') input = F.conv2d(input, kernel, groups=input.shape[1]) return input def focal_to_fov(focal: torch.Tensor): return 2 * torch.atan(0.5 / focal) def fov_to_focal(fov: torch.Tensor): return 0.5 / torch.tan(fov / 2) def angle_diff_vec3(v1: torch.Tensor, v2: torch.Tensor, eps: float = 1e-12): return torch.atan2(torch.cross(v1, v2, dim=-1).norm(dim=-1) + eps, (v1 * v2).sum(dim=-1)) def intrinsics_to_fov(intrinsics: torch.Tensor): """ Returns field of view in radians from normalized intrinsics matrix. ### Parameters: - intrinsics: torch.Tensor of shape (..., 3, 3) ### Returns: - fov_x: torch.Tensor of shape (...) - fov_y: torch.Tensor of shape (...) """ focal_x = intrinsics[..., 0, 0] focal_y = intrinsics[..., 1, 1] return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y) def point_map_to_depth_legacy(points: torch.Tensor): height, width = points.shape[-3:-1] diagonal = (height ** 2 + width ** 2) ** 0.5 uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2) # Solve least squares problem b = (uv * points[..., 2:]).flatten(-3, -1) # (..., H * W * 2) A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2) # (..., H * W * 2, 2) M = A.transpose(-2, -1) @ A solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1) focal, shift = solution.unbind(-1) depth = points[..., 2] + shift[..., None, None] fov_x = torch.atan(width / diagonal / focal) * 2 fov_y = torch.atan(height / diagonal / focal) * 2 return depth, fov_x, fov_y, shift def view_plane_uv_to_focal(uv: torch.Tensor): normed_uv = normalized_view_plane_uv(width=uv.shape[-2], height=uv.shape[-3], device=uv.device, dtype=uv.dtype) focal = (uv * normed_uv).sum() / uv.square().sum().add(1e-12) return focal def recover_focal_shift(points: torch.Tensor, mask: torch.Tensor = None, focal: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)): """ Recover the depth map and FoV from a point map with unknown z shift and focal. Note that it assumes: - the optical center is at the center of the map - the map is undistorted - the map is isometric in the x and y directions ### Parameters: - `points: torch.Tensor` of shape (..., H, W, 3) - `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps. ### Returns: - `focal`: torch.Tensor of shape (...) the estimated focal length, relative to the half diagonal of the map - `shift`: torch.Tensor of shape (...) Z-axis shift to translate the point map to camera space """ shape = points.shape height, width = points.shape[-3], points.shape[-2] diagonal = (height ** 2 + width ** 2) ** 0.5 points = points.reshape(-1, *shape[-3:]) mask = None if mask is None else mask.reshape(-1, *shape[-3:-1]) focal = focal.reshape(-1) if focal is not None else None uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2) points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1) uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0) mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0 uv_lr_np = uv_lr.cpu().numpy() points_lr_np = points_lr.detach().cpu().numpy() focal_np = focal.cpu().numpy() if focal is not None else None mask_lr_np = None if mask is None else mask_lr.cpu().numpy() optim_shift, optim_focal = [], [] for i in range(points.shape[0]): points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]] uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]] if uv_lr_i_np.shape[0] < 2: optim_focal.append(1) optim_shift.append(0) continue if focal is None: optim_shift_i, optim_focal_i = solve_optimal_focal_shift(uv_lr_i_np, points_lr_i_np) optim_focal.append(float(optim_focal_i)) else: optim_shift_i = solve_optimal_shift(uv_lr_i_np, points_lr_i_np, focal_np[i]) optim_shift.append(float(optim_shift_i)) optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype).reshape(shape[:-3]) if focal is None: optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype).reshape(shape[:-3]) else: optim_focal = focal.reshape(shape[:-3]) return optim_focal, optim_shift def mask_aware_nearest_resize( inputs: Union[torch.Tensor, Sequence[torch.Tensor], None], mask: torch.BoolTensor, size: Tuple[int, int], return_index: bool = False ) -> Tuple[Union[torch.Tensor, Sequence[torch.Tensor], None], torch.BoolTensor, Tuple[torch.LongTensor, ...]]: """ Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map. ### Parameters - `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...). - `mask`: input 2D mask of shape (..., H, W) - `size`: target size (target_width, target_height) ### Returns - `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...). - `resized_mask`: mask of the resized map of shape (..., target_height, target_width) - `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension, . """ height, width = mask.shape[-2:] target_width, target_height = size device = mask.device filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width) filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f) filter_size = filter_h_i * filter_w_i padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1 # Window the original mask and uv uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device) indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width) padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device) padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device) padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device) padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1)) windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1)) windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1)) # Gather the target pixels's local window target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device) target_lefttop = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device) target_window = torch.round(target_lefttop).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device) target_window_uv = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size) target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size) target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size) target_window_indices = target_window_indices.expand_as(target_window_mask) # Compute nearest neighbor in the local window for each pixel dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf) # (..., target_height, tgt_width, filter_size) nearest = torch.argmin(dist, dim=-1, keepdim=True) # (..., target_height, tgt_width, 1) nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1) # (..., target_height, tgt_width) target_mask = torch.any(target_window_mask, dim=-1) nearest_i, nearest_j = nearest_idx // width, nearest_idx % width batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])] index = (*batch_indices, nearest_i, nearest_j) if inputs is None: outputs = None elif isinstance(inputs, torch.Tensor): outputs = inputs[index] elif isinstance(inputs, Sequence): outputs = tuple(x[index] for x in inputs) else: raise ValueError(f'Invalid input type: {type(inputs)}') if return_index: return outputs, target_mask, index else: return outputs, target_mask def theshold_depth_change(depth: torch.Tensor, mask: torch.Tensor, pooler: Literal['min', 'max'], rtol: float = 0.2, kernel_size: int = 3): *batch_shape, height, width = depth.shape depth = depth.reshape(-1, 1, height, width) mask = mask.reshape(-1, 1, height, width) if pooler =='max': pooled_depth = F.max_pool2d(torch.where(mask, depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2) output_mask = pooled_depth > depth * (1 + rtol) elif pooler =='min': pooled_depth = -F.max_pool2d(-torch.where(mask, depth, torch.inf), kernel_size, stride=1, padding=kernel_size // 2) output_mask = pooled_depth < depth * (1 - rtol) else: raise ValueError(f'Unsupported pooler: {pooler}') output_mask = output_mask.reshape(*batch_shape, height, width) return output_mask def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1): device, dtype = depth.device, depth.dtype disp = torch.where(mask, 1 / depth, 0) disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0) mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False) disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2) # [..., H, W, kernel_size ** 2] mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2) # [..., H, W, kernel_size ** 2] x = torch.linspace(-kernel_size // 2, kernel_size // 2, kernel_size, device=device, dtype=dtype) A = torch.stack([*torch.meshgrid(x, x, indexing='xy'), torch.ones((kernel_size, kernel_size), device=device, dtype=dtype)], dim=-1).reshape(kernel_size ** 2, 3) # [kernel_size ** 2, 3] A = mask_window[..., None] * A I = torch.eye(3, device=device, dtype=dtype) affine_disp_window = (disp_window[..., None, :] @ A @ torch.inverse(A.mT @ A + 1e-5 * I) @ A.mT).clamp_min(1e-12)[..., 0, :] # [..., H, W, kernel_size ** 2] diff = torch.where(mask_window, torch.maximum(affine_disp_window, disp_window) / torch.minimum(affine_disp_window, disp_window) - 1, 0) edge_mask = mask & (diff > tol).any(dim=-1) disp_mean = weighted_mean(disp_window, mask_window, dim=-1) fg_edge_mask = edge_mask & (disp > disp_mean) # fg_edge_mask = edge_mask & theshold_depth_change(depth, mask, pooler='max', rtol=tol, kernel_size=kernel_size) bg_edge_mask = edge_mask & ~fg_edge_mask return fg_edge_mask, bg_edge_mask def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1): device, dtype = depth.device, depth.dtype disp = torch.where(mask, 1 / depth, 0) disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0) mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False) disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)) # [..., H, W, kernel_size ** 2] mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)) # [..., H, W, kernel_size ** 2] disp_mean = weighted_mean(disp_window, mask_window, dim=(-2, -1)) fg_edge_mask = mask & (disp / disp_mean > 1 + tol) bg_edge_mask = mask & (disp_mean / disp > 1 + tol) fg_edge_mask = fg_edge_mask & F.max_pool2d(bg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool() bg_edge_mask = bg_edge_mask & F.max_pool2d(fg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool() return fg_edge_mask, bg_edge_mask def dilate_with_mask(input: torch.Tensor, mask: torch.BoolTensor, filter: Literal['min', 'max', 'mean', 'median'] = 'mean', iterations: int = 1) -> torch.Tensor: kernel = torch.tensor([[False, True, False], [True, True, True], [False, True, False]], device=input.device, dtype=torch.bool) for _ in range(iterations): input_window = utils3d.torch.sliding_window_2d(F.pad(input, (1, 1, 1, 1), mode='constant', value=0), window_size=3, stride=1, dim=(-2, -1)) mask_window = kernel & utils3d.torch.sliding_window_2d(F.pad(mask, (1, 1, 1, 1), mode='constant', value=False), window_size=3, stride=1, dim=(-2, -1)) if filter =='min': input = torch.where(mask, input, torch.where(mask_window, input_window, torch.inf).min(dim=(-2, -1)).values) elif filter =='max': input = torch.where(mask, input, torch.where(mask_window, input_window, -torch.inf).max(dim=(-2, -1)).values) elif filter == 'mean': input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).nanmean(dim=(-2, -1))) elif filter =='median': input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).flatten(-2).nanmedian(dim=-1).values) mask = mask_window.any(dim=(-2, -1)) return input, mask def refine_depth_with_normal(depth: torch.Tensor, normal: torch.Tensor, intrinsics: torch.Tensor, iterations: int = 10, damp: float = 1e-3, eps: float = 1e-12, kernel_size: int = 5) -> torch.Tensor: device, dtype = depth.device, depth.dtype height, width = depth.shape[-2:] radius = kernel_size // 2 duv = torch.stack(torch.meshgrid(torch.linspace(-radius / width, radius / width, kernel_size, device=device, dtype=dtype), torch.linspace(-radius / height, radius / height, kernel_size, device=device, dtype=dtype), indexing='xy'), dim=-1).to(dtype=dtype, device=device) log_depth = depth.clamp_min_(eps).log() log_depth_diff = utils3d.torch.sliding_window_2d(log_depth, window_size=kernel_size, stride=1, dim=(-2, -1)) - log_depth[..., radius:-radius, radius:-radius, None, None] weight = torch.exp(-(log_depth_diff / duv.norm(dim=-1).clamp_min_(eps) / 10).square()) tot_weight = weight.sum(dim=(-2, -1)).clamp_min_(eps) uv = utils3d.torch.image_uv(height=height, width=width, device=device, dtype=dtype) K_inv = torch.inverse(intrinsics) grad = -(normal[..., None, :2] @ K_inv[..., None, None, :2, :2]).squeeze(-2) \ / (normal[..., None, 2:] + normal[..., None, :2] @ (K_inv[..., None, None, :2, :2] @ uv[..., :, None] + K_inv[..., None, None, :2, 2:])).squeeze(-2) laplacian = (weight * ((utils3d.torch.sliding_window_2d(grad, window_size=kernel_size, stride=1, dim=(-3, -2)) + grad[..., radius:-radius, radius:-radius, :, None, None]) * (duv.permute(2, 0, 1) / 2)).sum(dim=-3)).sum(dim=(-2, -1)) laplacian = laplacian.clamp(-0.1, 0.1) log_depth_refine = log_depth.clone() for _ in range(iterations): log_depth_refine[..., radius:-radius, radius:-radius] = 0.1 * log_depth_refine[..., radius:-radius, radius:-radius] + 0.9 * (damp * log_depth[..., radius:-radius, radius:-radius] - laplacian + (weight * utils3d.torch.sliding_window_2d(log_depth_refine, window_size=kernel_size, stride=1, dim=(-2, -1))).sum(dim=(-2, -1))) / (tot_weight + damp) depth_refine = log_depth_refine.exp() return depth_refine