File size: 1,308 Bytes
d48ca0f
 
 
 
 
 
b3010db
d48ca0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3010db
d48ca0f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


#import gradio as gr
#gr.load("models/mistralai/Mistral-7B-Instruct-v0.3").launch()

import os
import gradio as gr
import requests
from dotenv import load_dotenv

# Load the environment variables from the .env file
load_dotenv()

API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
headers = {"Authorization": f"Bearer {os.getenv('HFREAD')}"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

def chatbot_response(input_text):
    response = query({"inputs": input_text})
    if 'error' in response:
        return response['error']
    return response.get('generated_text', 'No response generated.')

# Gradio interface
def main():
    with gr.Blocks() as demo:
        gr.Markdown("# Mistral-7B Chatbot")
        
        with gr.Row():
            input_box = gr.Textbox(label="Input Text", placeholder="Type your question here...", lines=2)
        
        with gr.Row():
            output_box = gr.Textbox(label="Response", placeholder="The response will appear here...", lines=5)
        
        submit_button = gr.Button("Submit")
        
        submit_button.click(fn=chatbot_response, inputs=input_box, outputs=output_box)
    
    demo.launch()

if __name__ == "__main__":
    main()