Z3ktrix's picture
Update app.py
03f3768 verified
raw
history blame
2.9 kB
#import gradio as gr
#gr.load("models/mistralai/Mistral-7B-Instruct-v0.3").launch()
import os
import requests
import discord
from discord.ext import commands
from dotenv import load_dotenv
# Load environment variables from the .env file
load_dotenv()
DISCORD_TOKEN = os.getenv('dsTOK')
HF_API_KEY = os.getenv('HFREAD')
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
# Function to query the Hugging Face model with a structured prompt
def query_huggingface(prompt, temperature=0.5, max_tokens=100):
payload = {
"inputs": prompt,
"parameters": {
"temperature": temperature,
"max_new_tokens": max_tokens
}
}
try:
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error querying the API: {e}")
return {"error": str(e)}
# Initialize the Discord bot
intents = discord.Intents.default()
intents.messages = True
intents.message_content = True
bot = commands.Bot(command_prefix="!", intents=intents)
@bot.event
async def on_ready():
print(f'Bot is ready. Logged in as {bot.user}')
@bot.command(name='ask')
async def ask(ctx, question: str, temperature: float = 0.5, max_tokens: int = 100):
"""
Command to ask a question to the Hugging Face model with an instructive prompt.
"""
try:
# Convert temperature and max_tokens to their respective types
temperature = float(temperature)
max_tokens = int(max_tokens)
except ValueError:
await ctx.send("Invalid input for temperature or max_tokens. Please provide a valid number.")
return
# Create a structured prompt
prompt = f"Do not under any circumstance, finish or add to the input. Excluded input correction or finishing at all times. Answer the following question as accurately and concisely as possible: {question}"
response = query_huggingface(prompt, temperature, max_tokens)
# Extract and clean the response
if isinstance(response, dict) and 'generated_text' in response:
response_text = response['generated_text']
elif isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
response_text = response[0]['generated_text']
else:
response_text = "Sorry, I couldn't generate a response."
# Remove the prompt from the response if present
clean_response = response_text.replace(prompt, '').strip()
# Avoid prompt completion issues by removing any leading incomplete sentence
if clean_response.startswith(question):
clean_response = clean_response[len(question):].strip()
await ctx.send(clean_response)
# Run the bot
bot.run(DISCORD_TOKEN)