#import gradio as gr #gr.load("models/mistralai/Mistral-7B-Instruct-v0.3").launch() import os import gradio as gr import requests from dotenv import load_dotenv import gradio_client as grc grc.Client("Z3ktrix/mistralai-Mistral-7B-Instruct-v0.3").deploy_discord({"Authorization": f"Bearer {os.getenv('DSTOK')}"}) # Load the environment variables from the .env file load_dotenv() API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" headers = {"Authorization": f"Bearer {os.getenv('HFREAD')}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() def chatbot_response(input_text): response = query({"inputs": input_text}) # Extract the generated text from the response if isinstance(response, dict) and 'generated_text' in response: return response['generated_text'] elif isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]: return response[0]['generated_text'] return 'No response generated.' # Gradio interface def main(): with gr.Blocks() as demo: gr.Markdown("Chatty") with gr.Row(): input_box = gr.Textbox(label="Input Text", placeholder="Type your question here...", lines=2) with gr.Row(): output_box = gr.Textbox(label="Response", placeholder="The response will appear here...", lines=5) submit_button = gr.Button("Submit") submit_button.click(fn=chatbot_response, inputs=input_box, outputs=output_box) demo.launch() if __name__ == "__main__": main()