Surya Narayana commited on
Commit
918b0c8
·
verified ·
1 Parent(s): ac11fa0

Update text_to_image.py

Browse files
Files changed (1) hide show
  1. text_to_image.py +9 -80
text_to_image.py CHANGED
@@ -8,14 +8,14 @@ Original file is located at
8
  """
9
 
10
  # Commented out IPython magic to ensure Python compatibility.
11
- # %pip install -q "openvino>=2023.1.0"
12
- # %pip install -q --extra-index-url https://download.pytorch.org/whl/cpu "diffusers[torch]>=0.9.0"
13
- # %pip install -q "huggingface-hub>=0.9.1"
14
- # %pip install -q gradio
15
- # %pip install -q transformers
16
- # %pip install kaleido cohere openai tiktoken
17
- # %pip install typing-extensions==3.10.0.2
18
- # %pip install diffusers transformers
19
 
20
  from diffusers import StableDiffusionPipeline
21
  import gc
@@ -599,44 +599,6 @@ ov_pipe = OVStableDiffusionPipeline(
599
  scheduler=lms
600
  )
601
 
602
- """### Text-to-Image generation
603
- [back to top ⬆️](#Table-of-contents:)
604
-
605
- Now, you can define a text prompt for image generation and run inference pipeline.
606
- Optionally, you can also change the random generator seed for latent state initialization and number of steps.
607
-
608
- > **Note**: Consider increasing `steps` to get more precise results. A suggested value is `50`, but it will take longer time to process.
609
- """
610
-
611
- import ipywidgets as widgets
612
- sample_text = ('cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting, epic composition. '
613
- 'A golden daylight, hyper-realistic environment. '
614
- 'Hyper and intricate detail, photo-realistic. '
615
- 'Cinematic and volumetric light. '
616
- 'Epic concept art. '
617
- 'Octane render and Unreal Engine, trending on artstation')
618
- text_prompt = widgets.Text(value=sample_text, description='your text')
619
- num_steps = widgets.IntSlider(min=1, max=50, value=20, description='steps:')
620
- seed = widgets.IntSlider(min=0, max=10000000, description='seed: ', value=42)
621
- widgets.VBox([text_prompt, seed, num_steps])
622
-
623
- print('Pipeline settings')
624
- print(f'Input text: {text_prompt.value}')
625
- print(f'Seed: {seed.value}')
626
- print(f'Number of steps: {num_steps.value}')
627
-
628
- result = ov_pipe(text_prompt.value, num_inference_steps=num_steps.value, seed=seed.value)
629
-
630
- """Finally, let us save generation results.
631
- The pipeline returns several results: `sample` contains final generated image, `iterations` contains list of intermediate results for each step.
632
- """
633
-
634
- final_image = result['sample'][0]
635
- if result['iterations']:
636
- all_frames = result['iterations']
637
- img = next(iter(all_frames))
638
- img.save(fp='result.gif', format='GIF', append_images=iter(all_frames), save_all=True, duration=len(all_frames) * 5, loop=0)
639
- final_image.save('result.png')
640
 
641
  """Now is show time!"""
642
 
@@ -645,37 +607,4 @@ import ipywidgets as widgets
645
  text = '\n\t'.join(text_prompt.value.split('.'))
646
  print("Input text:")
647
  print("\t" + text)
648
- display(final_image)
649
-
650
- """Nice. As you can see, the picture has quite a high definition 🔥."""
651
-
652
- import gradio as gr
653
-
654
- def generate_from_text(text, seed, num_steps, _=gr.Progress(track_tqdm=True)):
655
- result = ov_pipe(text, num_inference_steps=num_steps, seed=seed)
656
- return result["sample"][0]
657
-
658
- with gr.Blocks() as demo:
659
- with gr.Tab("Text-to-Image generation"):
660
- with gr.Row():
661
- with gr.Column():
662
- text_input = gr.Textbox(lines=3, label="Text")
663
- seed_input = gr.Slider(0, 10000000, value=42, label="Seed")
664
- steps_input = gr.Slider(1, 50, value=20, step=1, label="Steps")
665
- out = gr.Image(label="Result", type="pil")
666
- btn = gr.Button()
667
- btn.click(generate_from_text, [text_input, seed_input, steps_input], out)
668
-
669
- # Remove the "Image-to-Image generation" tab and its content
670
-
671
- try:
672
- demo.launch(debug=True)
673
- except Exception:
674
- demo.launch(share=True, debug=True)
675
-
676
- !ls # List files in the current directory
677
-
678
- !echo "Hello, World!" # Print a message
679
-
680
- !gradio deploy
681
-
 
8
  """
9
 
10
  # Commented out IPython magic to ensure Python compatibility.
11
+ %pip install -q "openvino>=2023.1.0"
12
+ %pip install -q --extra-index-url https://download.pytorch.org/whl/cpu "diffusers[torch]>=0.9.0"
13
+ %pip install -q "huggingface-hub>=0.9.1"
14
+ %pip install -q gradio
15
+ %pip install -q transformers
16
+ %pip install kaleido cohere openai tiktoken
17
+ %pip install typing-extensions==3.10.0.2
18
+ %pip install diffusers transformers
19
 
20
  from diffusers import StableDiffusionPipeline
21
  import gc
 
599
  scheduler=lms
600
  )
601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602
 
603
  """Now is show time!"""
604
 
 
607
  text = '\n\t'.join(text_prompt.value.split('.'))
608
  print("Input text:")
609
  print("\t" + text)
610
+ display(final_image)