DermaScanBeta / app.py
ZDPLI's picture
Rename appSWA.py to app.py
80a0a9d verified
import torch
import gradio as gr
from transformers import ViTImageProcessor, AutoModelForImageClassification
from PIL import Image
import numpy as np
import time
# -----------------------------
# Configuration and Setup
# -----------------------------
# Force Gradio to use CUDA (if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Model path
model_path = "final_model"
# Load image processor and model
try:
print("Loading image processor...")
processor = ViTImageProcessor.from_pretrained(model_path)
print("Loading model...")
model = AutoModelForImageClassification.from_pretrained(model_path)
model = model.to(device)
model.eval() # Important for deterministic behavior
except Exception as e:
raise RuntimeError(f"Error loading model: {e}")
# Attempt to load label mappings
try:
labels = model.config.id2label
assert isinstance(labels, dict) and len(labels) > 0, "Invalid or empty id2label mapping"
except Exception as e:
print(f"⚠️ Labels not found in model config: {e}")
labels = {i: f"Class {i}" for i in range(model.config.num_labels)}
# -----------------------------
# Standalone Test Mode (Optional)
# -----------------------------
def test_inference():
"""Run inference outside Gradio to verify model works"""
dummy_img = Image.new('RGB', (224, 224), color='red') # Create a dummy image
print("Running standalone inference test...")
try:
inputs = processor(images=dummy_img, return_tensors="pt").to(device)
with torch.inference_mode():
outputs = model(**inputs)
print("βœ… Model inference test successful")
except Exception as e:
print(f"❌ Inference test failed: {e}")
# -----------------------------
# Prediction Function
# -----------------------------
def predict(image):
if image is None:
return "No image uploaded."
print("\n[INFO] Starting prediction pipeline...")
# Step 1: Preprocessing
print("[STEP 1] Preprocessing image...")
try:
start = time.time()
inputs = processor(images=image, return_tensors="pt").to(device)
print(f"[DEBUG] Input shape: {inputs['pixel_values'].shape}")
print(f"[DEBUG] Time taken: {time.time() - start:.2f}s")
except Exception as e:
return f"❌ Error in preprocessing: {e}"
# Step 2: Inference
print("[STEP 2] Running inference...")
try:
start = time.time()
with torch.inference_mode():
outputs = model(**inputs)
print(f"[DEBUG] Inference completed in {time.time() - start:.2f}s")
except Exception as e:
return f"❌ Error in model inference: {e}"
# Step 3: Post-processing
print("[STEP 3] Processing output...")
try:
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
top5_probs, top5_indices = torch.topk(probs, 5)
result = ""
for i in range(5):
idx = top5_indices[0][i].item()
label = labels.get(idx, f"Unknown class {idx}")
prob = top5_probs[0][i].item() * 100
result += f"{i + 1}. {label} β€” {prob:.2f}%\n"
except Exception as e:
return f"❌ Error post-processing: {e}"
print("[INFO] Prediction complete βœ…\n")
return result.strip()
# -----------------------------
# Gradio Interface
# -----------------------------
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload an Image"),
outputs=gr.Textbox(label="Top 5 Predictions"),
title="Fine-Tuned ViT Image Classifier",
description="Upload an image to get the top 5 predicted classes with confidence scores.",
allow_flagging="never",
examples=[["examples/test_image.jpg"]] if "examples" in locals() else None
)
if __name__ == "__main__":
print("\nπŸš€ Launching Gradio interface...\n")
test_inference() # Optional: Run test before launching
interface.launch(share=True)