ZDPLI's picture
Update app.py
a420201 verified
import gradio as gr
import torch
from PIL import Image
import numpy as np
from torchvision import models
from torchvision import transforms
from transformers import ViTForImageClassification
from torch import nn
from torch.cuda.amp import autocast
import os
# Global configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Label mapping (HAM10K)
label_mapping = {
0: "Меланома",
1: "Меланоцитарный невус",
2: "Базальноклеточная карцинома",
3: "Актинический кератоз",
4: "Доброкачественная кератоза",
5: "Дерматофиброма",
6: "Сосудистые поражения"
}
# Model paths
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./")
# Model definitions
def get_efficientnet():
model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
model.classifier[1] = nn.Linear(1280, 7)
return model.to(device)
def get_deit():
model = ViTForImageClassification.from_pretrained(
'facebook/deit-base-patch16-224',
num_labels=7,
ignore_mismatched_sizes=True
)
return model.to(device)
# Transforms
def transform_image(image):
"""Transform PIL image to model input format"""
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
return transform(image).unsqueeze(0).to(device)
# Model Handler
class ModelHandler:
def __init__(self):
self.efficientnet = None
self.deit = None
self.models_loaded = False
self.load_models()
def load_models(self):
try:
# Load EfficientNet
self.efficientnet = get_efficientnet()
efficientnet_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
self.efficientnet.load_state_dict(torch.load(efficientnet_path, map_location=device))
self.efficientnet.eval()
# Load DeiT
self.deit = get_deit()
deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
self.deit.load_state_dict(torch.load(deit_path, map_location=device))
self.deit.eval()
self.models_loaded = True
print("✅ Models loaded successfully")
except Exception as e:
print(f"❌ Error loading models: {str(e)}")
self.models_loaded = False
@torch.no_grad()
def predict_efficientnet(self, image):
if not self.models_loaded:
return {"error": "Модели не загружены"}
inputs = transform_image(image)
with autocast():
outputs = self.efficientnet(inputs)
probs = torch.nn.functional.softmax(outputs, dim=1)
return self._format_predictions(probs)
@torch.no_grad()
def predict_deit(self, image):
if not self.models_loaded:
return {"error": "Модели не загружены"}
inputs = transform_image(image)
with autocast():
outputs = self.deit(inputs).logits
probs = torch.nn.functional.softmax(outputs, dim=1)
return self._format_predictions(probs)
@torch.no_grad()
def predict_ensemble(self, image):
if not self.models_loaded:
return {"error": "Модели не загружены"}
inputs = transform_image(image)
with autocast():
eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
deit_probs = torch.nn.functional.softmax(self.deit(inputs).logits, dim=1)
ensemble_probs = (eff_probs + deit_probs) / 2
return self._format_predictions(ensemble_probs)
def _format_predictions(self, probs):
top5_probs, top5_indices = torch.topk(probs, 5)
result = {}
for i in range(5):
idx = top5_indices[0][i].item()
label = label_mapping.get(idx, f"Класс {idx}")
# return raw prob, not percent:
result[label] = float(top5_probs[0][i].item())
return result
# Initialize model handler
model_handler = ModelHandler()
# Prediction wrappers
def predict_efficientnet(image):
if image is None:
return "⚠️ Загрузите изображение"
return model_handler.predict_efficientnet(image)
def predict_deit(image):
if image is None:
return "⚠️ Загрузите изображение"
return model_handler.predict_deit(image)
def predict_ensemble(image):
if image is None:
return "⚠️ Загрузите изображение"
return model_handler.predict_ensemble(image)
# Create Gradio Blocks with Tabs
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Диагностика кожных поражений (HAM10K)")
status = "✅ Модели готовы к предсказанию" if model_handler.models_loaded else "⚠️ Предупреждение: Модели не загружены"
gr.Markdown(f"**Состояние моделей:** {status}")
with gr.Tabs():
with gr.TabItem("EfficientNet"):
img = gr.Image(label="Загрузите изображение", type="pil")
btn = gr.Button("Предсказать", variant="primary")
out = gr.Label(label="Результаты")
btn.click(predict_efficientnet, inputs=img, outputs=out)
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
with gr.TabItem("DeiT"):
img = gr.Image(label="Загрузите изображение", type="pil")
btn = gr.Button("Предсказать", variant="primary")
out = gr.Label(label="Результаты")
btn.click(predict_deit, inputs=img, outputs=out)
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
with gr.TabItem("Ансамблевая модель"):
img = gr.Image(label="Загрузите изображение", type="pil")
btn = gr.Button("Предсказать", variant="primary")
out = gr.Label(label="Результаты")
btn.click(predict_ensemble, inputs=img, outputs=out)
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
return demo
# Launch interface
if __name__ == "__main__":
interface = create_interface()
print("🚀 Запуск интерфейса...")
interface.launch(share=True)