Views / app.py
ZENLLC's picture
Update app.py
fc232c8 verified
raw
history blame
5.33 kB
import cv2
import numpy as np
from PIL import Image, ImageDraw
import gradio as gr
def classify_pipe_material(image_np):
"""
Heuristic to classify the overall pipe material based on brightness.
Brighter images (mean intensity > 130) are assumed to be Plastic; otherwise, Metal.
"""
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
mean_intensity = np.mean(gray)
return "Plastic" if mean_intensity > 130 else "Metal"
def detect_rust(roi):
"""
Detect rust in the region of interest (ROI) by analyzing the HSV color space.
Rust typically has reddish-brown hues.
"""
# Convert ROI to HSV color space
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
# Define rust color range in HSV (tweak these values as needed)
lower_rust = np.array([5, 50, 50])
upper_rust = np.array([25, 255, 255])
mask = cv2.inRange(hsv_roi, lower_rust, upper_rust)
rust_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
return rust_ratio
def classify_defect(roi):
"""
Classify the defect type using both geometric/texture heuristics and color analysis.
The function returns one of:
- "Rust" (if a significant fraction of the region has rust-like colors)
- "Crack" (if the ROI is small, long, and has high intensity variation)
- "Corrosion" (if the ROI is larger with moderate texture variation)
- "Other Defect" (fallback category)
"""
area = roi.shape[0] * roi.shape[1]
std_intensity = np.std(roi)
# Check for rust first
rust_ratio = detect_rust(roi)
if rust_ratio > 0.3:
return "Rust"
# Use area and intensity variation to distinguish other defects.
if area < 5000 and std_intensity > 50:
return "Crack"
elif area >= 5000 and std_intensity > 40:
return "Corrosion"
else:
return "Other Defect"
def detect_pipe_issues(image: Image.Image):
try:
# Convert PIL image to a NumPy array (RGB)
image_np = np.array(image)
annotated = image.copy() # Copy for annotation
draw = ImageDraw.Draw(annotated)
# Classify overall pipe material
pipe_material = classify_pipe_material(image_np)
# Preprocessing: convert to grayscale and enhance contrast with CLAHE
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
# Apply Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
# Adaptive thresholding to highlight potential defect areas
thresh = cv2.adaptiveThreshold(
blurred, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,
11, 2
)
# Morphological closing to connect fragmented regions
kernel = np.ones((3, 3), np.uint8)
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
# Edge detection
edges = cv2.Canny(morph, 50, 150)
# Find contours corresponding to potential defects
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
detections = []
# Define colors for different defect types
colors = {
"Rust": "orange",
"Crack": "red",
"Corrosion": "blue",
"Other Defect": "green"
}
for cnt in contours:
# Filter out small contours to ignore noise
if cv2.contourArea(cnt) < 100:
continue
x, y, w, h = cv2.boundingRect(cnt)
# Extract ROI from the original image
roi = image_np[y:y+h, x:x+w]
if roi.size == 0:
continue
defect_type = classify_defect(roi)
detection_info = f"{defect_type} at ({x}, {y}, {w}, {h})"
detections.append(detection_info)
# Draw bounding box with corresponding color and label
box_color = colors.get(defect_type, "green")
draw.rectangle([x, y, x+w, y+h], outline=box_color, width=2)
draw.text((x, y-10), defect_type, fill=box_color)
# Create a summary including pipe material and detected defects
if detections:
summary = f"Pipe Material: {pipe_material}\nDetected Issues:\n" + "\n".join(detections)
else:
summary = f"Pipe Material: {pipe_material}\nNo significant defects detected."
return annotated, summary
except Exception as e:
print("Error during detection:", e)
return image, f"Error: {e}"
iface = gr.Interface(
fn=detect_pipe_issues,
inputs=gr.Image(type="pil", label="Upload a Pipe Image"),
outputs=[gr.Image(label="Annotated Image"), gr.Textbox(label="Detection Summary")],
title="Pipe Defect Detector",
description=(
"Upload an image of a pipe to detect granular issues such as cracks, corrosion, rust, "
"and other defects. The app classifies the defect type and displays a colored bounding box for each class. "
"Pipe material (Plastic or Metal) is also identified."
)
)
if __name__ == "__main__":
iface.launch()