Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
|
6 |
+
# Load the pre-trained DETR model and processor
|
7 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
8 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
9 |
+
|
10 |
+
def detect_objects(image: Image.Image) -> Image.Image:
|
11 |
+
try:
|
12 |
+
# Preprocess the image
|
13 |
+
inputs = processor(images=image, return_tensors="pt")
|
14 |
+
outputs = model(**inputs)
|
15 |
+
|
16 |
+
# Convert outputs to bounding boxes and labels
|
17 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
18 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
19 |
+
|
20 |
+
# Draw bounding boxes on the image
|
21 |
+
draw = ImageDraw.Draw(image)
|
22 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
23 |
+
box = [round(i, 2) for i in box.tolist()]
|
24 |
+
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}"
|
25 |
+
draw.rectangle(box, outline="red", width=3)
|
26 |
+
draw.text((box[0], box[1]), label_text, fill="red")
|
27 |
+
return image
|
28 |
+
except Exception as e:
|
29 |
+
print("Error during detection:", e)
|
30 |
+
return image # In a robust production system, consider returning a message or a default image
|
31 |
+
|
32 |
+
# Create a Gradio interface
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=detect_objects,
|
35 |
+
inputs=gr.Image(type="pil", label="Upload an Image"),
|
36 |
+
outputs=gr.Image(label="Detection Result"),
|
37 |
+
title="Robust Object Detection with DETR",
|
38 |
+
description="Upload an image to detect objects using a pre-trained DETR model from Hugging Face Hub."
|
39 |
+
)
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
iface.launch()
|