Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import gradio as gr
|
|
5 |
|
6 |
def classify_pipe_material(image_np):
|
7 |
"""
|
8 |
-
|
9 |
Brighter images (mean intensity > 130) are assumed to be Plastic; otherwise, Metal.
|
10 |
"""
|
11 |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
@@ -14,36 +14,62 @@ def classify_pipe_material(image_np):
|
|
14 |
|
15 |
def detect_rust(roi):
|
16 |
"""
|
17 |
-
Detect rust
|
18 |
-
Rust typically has reddish-brown hues.
|
19 |
"""
|
20 |
-
# Convert ROI to HSV color space
|
21 |
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
|
22 |
-
# Define rust color range in HSV (tweak these values as needed)
|
23 |
lower_rust = np.array([5, 50, 50])
|
24 |
upper_rust = np.array([25, 255, 255])
|
25 |
mask = cv2.inRange(hsv_roi, lower_rust, upper_rust)
|
26 |
rust_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
|
27 |
return rust_ratio
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def classify_defect(roi):
|
30 |
"""
|
31 |
-
Classify the defect
|
32 |
-
|
33 |
-
- "Rust"
|
34 |
-
- "
|
35 |
-
- "
|
36 |
-
|
37 |
"""
|
38 |
area = roi.shape[0] * roi.shape[1]
|
39 |
std_intensity = np.std(roi)
|
40 |
|
41 |
-
# Check for rust first
|
42 |
rust_ratio = detect_rust(roi)
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
return "Rust"
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
if area < 5000 and std_intensity > 50:
|
48 |
return "Crack"
|
49 |
elif area >= 5000 and std_intensity > 40:
|
@@ -51,25 +77,23 @@ def classify_defect(roi):
|
|
51 |
else:
|
52 |
return "Other Defect"
|
53 |
|
54 |
-
def
|
55 |
try:
|
56 |
-
# Convert PIL image to a NumPy array (RGB)
|
57 |
image_np = np.array(image)
|
58 |
-
annotated = image.copy() #
|
59 |
draw = ImageDraw.Draw(annotated)
|
60 |
|
61 |
-
# Classify overall pipe material
|
62 |
-
|
63 |
|
64 |
-
#
|
65 |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
66 |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
67 |
enhanced = clahe.apply(gray)
|
68 |
-
|
69 |
-
# Apply Gaussian blur to reduce noise
|
70 |
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
|
71 |
|
72 |
-
# Adaptive thresholding
|
73 |
thresh = cv2.adaptiveThreshold(
|
74 |
blurred, 255,
|
75 |
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
@@ -77,31 +101,31 @@ def detect_pipe_issues(image: Image.Image):
|
|
77 |
11, 2
|
78 |
)
|
79 |
|
80 |
-
# Morphological closing to
|
81 |
kernel = np.ones((3, 3), np.uint8)
|
82 |
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
83 |
|
84 |
-
# Edge detection
|
85 |
edges = cv2.Canny(morph, 50, 150)
|
86 |
|
87 |
-
#
|
88 |
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
89 |
detections = []
|
90 |
|
91 |
-
# Define colors for
|
92 |
colors = {
|
93 |
"Rust": "orange",
|
|
|
|
|
94 |
"Crack": "red",
|
95 |
-
"Corrosion": "
|
96 |
-
"Other Defect": "
|
97 |
}
|
98 |
|
99 |
for cnt in contours:
|
100 |
-
# Filter out
|
101 |
-
if cv2.contourArea(cnt) < 100:
|
102 |
continue
|
103 |
x, y, w, h = cv2.boundingRect(cnt)
|
104 |
-
# Extract ROI from the original image
|
105 |
roi = image_np[y:y+h, x:x+w]
|
106 |
if roi.size == 0:
|
107 |
continue
|
@@ -109,16 +133,16 @@ def detect_pipe_issues(image: Image.Image):
|
|
109 |
detection_info = f"{defect_type} at ({x}, {y}, {w}, {h})"
|
110 |
detections.append(detection_info)
|
111 |
|
112 |
-
# Draw bounding box with
|
113 |
-
box_color = colors.get(defect_type, "
|
114 |
draw.rectangle([x, y, x+w, y+h], outline=box_color, width=2)
|
115 |
draw.text((x, y-10), defect_type, fill=box_color)
|
116 |
|
117 |
-
# Create a summary
|
118 |
if detections:
|
119 |
-
summary = f"
|
120 |
else:
|
121 |
-
summary = f"
|
122 |
|
123 |
return annotated, summary
|
124 |
except Exception as e:
|
@@ -126,14 +150,14 @@ def detect_pipe_issues(image: Image.Image):
|
|
126 |
return image, f"Error: {e}"
|
127 |
|
128 |
iface = gr.Interface(
|
129 |
-
fn=
|
130 |
-
inputs=gr.Image(type="pil", label="Upload
|
131 |
outputs=[gr.Image(label="Annotated Image"), gr.Textbox(label="Detection Summary")],
|
132 |
-
title="
|
133 |
description=(
|
134 |
-
"Upload an image of a pipe
|
135 |
-
"
|
136 |
-
"
|
137 |
)
|
138 |
)
|
139 |
|
|
|
5 |
|
6 |
def classify_pipe_material(image_np):
|
7 |
"""
|
8 |
+
Classify overall material based on image brightness.
|
9 |
Brighter images (mean intensity > 130) are assumed to be Plastic; otherwise, Metal.
|
10 |
"""
|
11 |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
|
|
14 |
|
15 |
def detect_rust(roi):
|
16 |
"""
|
17 |
+
Detect rust by checking for reddish-brown hues in the ROI.
|
|
|
18 |
"""
|
|
|
19 |
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
|
|
|
20 |
lower_rust = np.array([5, 50, 50])
|
21 |
upper_rust = np.array([25, 255, 255])
|
22 |
mask = cv2.inRange(hsv_roi, lower_rust, upper_rust)
|
23 |
rust_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
|
24 |
return rust_ratio
|
25 |
|
26 |
+
def detect_mold(roi):
|
27 |
+
"""
|
28 |
+
Detect mold by looking for greenish hues, which may indicate fungal growth.
|
29 |
+
"""
|
30 |
+
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
|
31 |
+
lower_mold = np.array([35, 50, 20])
|
32 |
+
upper_mold = np.array([85, 255, 120])
|
33 |
+
mask = cv2.inRange(hsv_roi, lower_mold, upper_mold)
|
34 |
+
mold_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
|
35 |
+
return mold_ratio
|
36 |
+
|
37 |
+
def detect_water_damage(roi):
|
38 |
+
"""
|
39 |
+
Detect water damage by checking for discoloration typical of stains (dark brownish-yellow).
|
40 |
+
"""
|
41 |
+
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
|
42 |
+
lower_water = np.array([5, 50, 50])
|
43 |
+
upper_water = np.array([20, 200, 150])
|
44 |
+
mask = cv2.inRange(hsv_roi, lower_water, upper_water)
|
45 |
+
water_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1])
|
46 |
+
return water_ratio
|
47 |
+
|
48 |
def classify_defect(roi):
|
49 |
"""
|
50 |
+
Classify the defect using a combination of color and texture heuristics.
|
51 |
+
Priority is given to color cues:
|
52 |
+
- "Rust": reddish-brown
|
53 |
+
- "Mold": greenish
|
54 |
+
- "Water Damage": discoloration from water stains
|
55 |
+
Then geometric/texture analysis is used to differentiate "Crack" and "Corrosion."
|
56 |
"""
|
57 |
area = roi.shape[0] * roi.shape[1]
|
58 |
std_intensity = np.std(roi)
|
59 |
|
|
|
60 |
rust_ratio = detect_rust(roi)
|
61 |
+
mold_ratio = detect_mold(roi)
|
62 |
+
water_ratio = detect_water_damage(roi)
|
63 |
+
|
64 |
+
# Check for color-based defects first.
|
65 |
+
if rust_ratio > 0.25:
|
66 |
return "Rust"
|
67 |
+
elif mold_ratio > 0.2:
|
68 |
+
return "Mold"
|
69 |
+
elif water_ratio > 0.2:
|
70 |
+
return "Water Damage"
|
71 |
|
72 |
+
# Then use size and intensity variation for structural defects.
|
73 |
if area < 5000 and std_intensity > 50:
|
74 |
return "Crack"
|
75 |
elif area >= 5000 and std_intensity > 40:
|
|
|
77 |
else:
|
78 |
return "Other Defect"
|
79 |
|
80 |
+
def detect_infrastructure_issues(image: Image.Image):
|
81 |
try:
|
82 |
+
# Convert the PIL image to a NumPy array (RGB)
|
83 |
image_np = np.array(image)
|
84 |
+
annotated = image.copy() # For drawing annotations
|
85 |
draw = ImageDraw.Draw(annotated)
|
86 |
|
87 |
+
# Classify the overall pipe (or structure) material
|
88 |
+
overall_material = classify_pipe_material(image_np)
|
89 |
|
90 |
+
# Enhance image for defect detection:
|
91 |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
92 |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
93 |
enhanced = clahe.apply(gray)
|
|
|
|
|
94 |
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
|
95 |
|
96 |
+
# Adaptive thresholding highlights potential defect areas
|
97 |
thresh = cv2.adaptiveThreshold(
|
98 |
blurred, 255,
|
99 |
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
|
|
101 |
11, 2
|
102 |
)
|
103 |
|
104 |
+
# Morphological closing to consolidate defect regions
|
105 |
kernel = np.ones((3, 3), np.uint8)
|
106 |
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
107 |
|
108 |
+
# Edge detection to identify defect boundaries
|
109 |
edges = cv2.Canny(morph, 50, 150)
|
110 |
|
111 |
+
# Extract contours as candidate defect regions
|
112 |
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
113 |
detections = []
|
114 |
|
115 |
+
# Define distinct colors for each defect type
|
116 |
colors = {
|
117 |
"Rust": "orange",
|
118 |
+
"Mold": "purple",
|
119 |
+
"Water Damage": "blue",
|
120 |
"Crack": "red",
|
121 |
+
"Corrosion": "cyan",
|
122 |
+
"Other Defect": "gray"
|
123 |
}
|
124 |
|
125 |
for cnt in contours:
|
126 |
+
if cv2.contourArea(cnt) < 100: # Filter out noise
|
|
|
127 |
continue
|
128 |
x, y, w, h = cv2.boundingRect(cnt)
|
|
|
129 |
roi = image_np[y:y+h, x:x+w]
|
130 |
if roi.size == 0:
|
131 |
continue
|
|
|
133 |
detection_info = f"{defect_type} at ({x}, {y}, {w}, {h})"
|
134 |
detections.append(detection_info)
|
135 |
|
136 |
+
# Draw bounding box with defect-specific color
|
137 |
+
box_color = colors.get(defect_type, "gray")
|
138 |
draw.rectangle([x, y, x+w, y+h], outline=box_color, width=2)
|
139 |
draw.text((x, y-10), defect_type, fill=box_color)
|
140 |
|
141 |
+
# Create a textual summary
|
142 |
if detections:
|
143 |
+
summary = f"Overall Material: {overall_material}\nDetected Issues:\n" + "\n".join(detections)
|
144 |
else:
|
145 |
+
summary = f"Overall Material: {overall_material}\nNo significant defects detected."
|
146 |
|
147 |
return annotated, summary
|
148 |
except Exception as e:
|
|
|
150 |
return image, f"Error: {e}"
|
151 |
|
152 |
iface = gr.Interface(
|
153 |
+
fn=detect_infrastructure_issues,
|
154 |
+
inputs=gr.Image(type="pil", label="Upload an Infrastructure Image"),
|
155 |
outputs=[gr.Image(label="Annotated Image"), gr.Textbox(label="Detection Summary")],
|
156 |
+
title="Comprehensive Home Infrastructure Defect Detector",
|
157 |
description=(
|
158 |
+
"Upload an image of a pipe or any home infrastructure (walls, floors, etc.) to detect defects. "
|
159 |
+
"This tool identifies issues such as Rust (orange), Mold (purple), Water Damage (blue), Cracks (red), "
|
160 |
+
"and Corrosion (cyan), and returns both an annotated image and a detailed summary."
|
161 |
)
|
162 |
)
|
163 |
|