import cv2 import numpy as np from PIL import Image, ImageDraw import gradio as gr def classify_pipe_material(image_np): """ Classify overall material based on image brightness. Brighter images (mean intensity > 130) are assumed to be Plastic; otherwise, Metal. """ gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) mean_intensity = np.mean(gray) return "Plastic" if mean_intensity > 130 else "Metal" def detect_rust(roi): """ Detect rust by checking for reddish-brown hues in the ROI. """ hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV) lower_rust = np.array([5, 50, 50]) upper_rust = np.array([25, 255, 255]) mask = cv2.inRange(hsv_roi, lower_rust, upper_rust) rust_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1]) return rust_ratio def detect_mold(roi): """ Detect mold by looking for greenish hues, which may indicate fungal growth. """ hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV) lower_mold = np.array([35, 50, 20]) upper_mold = np.array([85, 255, 120]) mask = cv2.inRange(hsv_roi, lower_mold, upper_mold) mold_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1]) return mold_ratio def detect_water_damage(roi): """ Detect water damage by checking for discoloration typical of stains (dark brownish-yellow). """ hsv_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV) lower_water = np.array([5, 50, 50]) upper_water = np.array([20, 200, 150]) mask = cv2.inRange(hsv_roi, lower_water, upper_water) water_ratio = np.count_nonzero(mask) / float(roi.shape[0] * roi.shape[1]) return water_ratio def classify_defect(roi): """ Classify the defect using a combination of color and texture heuristics. Priority is given to color cues: - "Rust": reddish-brown - "Mold": greenish - "Water Damage": discoloration from water stains Then geometric/texture analysis is used to differentiate "Crack" and "Corrosion." """ area = roi.shape[0] * roi.shape[1] std_intensity = np.std(roi) rust_ratio = detect_rust(roi) mold_ratio = detect_mold(roi) water_ratio = detect_water_damage(roi) # Check for color-based defects first. if rust_ratio > 0.25: return "Rust" elif mold_ratio > 0.2: return "Mold" elif water_ratio > 0.2: return "Water Damage" # Then use size and intensity variation for structural defects. if area < 5000 and std_intensity > 50: return "Crack" elif area >= 5000 and std_intensity > 40: return "Corrosion" else: return "Other Defect" def detect_infrastructure_issues(image: Image.Image): try: # Convert the PIL image to a NumPy array (RGB) image_np = np.array(image) annotated = image.copy() # For drawing annotations draw = ImageDraw.Draw(annotated) # Classify the overall pipe (or structure) material overall_material = classify_pipe_material(image_np) # Enhance image for defect detection: gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) enhanced = clahe.apply(gray) blurred = cv2.GaussianBlur(enhanced, (5, 5), 0) # Adaptive thresholding highlights potential defect areas thresh = cv2.adaptiveThreshold( blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2 ) # Morphological closing to consolidate defect regions kernel = np.ones((3, 3), np.uint8) morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) # Edge detection to identify defect boundaries edges = cv2.Canny(morph, 50, 150) # Extract contours as candidate defect regions contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) detections = [] # Define distinct colors for each defect type colors = { "Rust": "orange", "Mold": "purple", "Water Damage": "blue", "Crack": "red", "Corrosion": "cyan", "Other Defect": "gray" } for cnt in contours: if cv2.contourArea(cnt) < 100: # Filter out noise continue x, y, w, h = cv2.boundingRect(cnt) roi = image_np[y:y+h, x:x+w] if roi.size == 0: continue defect_type = classify_defect(roi) detection_info = f"{defect_type} at ({x}, {y}, {w}, {h})" detections.append(detection_info) # Draw bounding box with defect-specific color box_color = colors.get(defect_type, "gray") draw.rectangle([x, y, x+w, y+h], outline=box_color, width=2) draw.text((x, y-10), defect_type, fill=box_color) # Create a textual summary if detections: summary = f"Overall Material: {overall_material}\nDetected Issues:\n" + "\n".join(detections) else: summary = f"Overall Material: {overall_material}\nNo significant defects detected." return annotated, summary except Exception as e: print("Error during detection:", e) return image, f"Error: {e}" iface = gr.Interface( fn=detect_infrastructure_issues, inputs=gr.Image(type="pil", label="Upload an Infrastructure Image"), outputs=[gr.Image(label="Annotated Image"), gr.Textbox(label="Detection Summary")], title="Comprehensive Home Infrastructure Defect Detector", description=( "Upload an image of a pipe or any home infrastructure (walls, floors, etc.) to detect defects. " "This tool identifies issues such as Rust (orange), Mold (purple), Water Damage (blue), Cracks (red), " "and Corrosion (cyan), and returns both an annotated image and a detailed summary." ) ) if __name__ == "__main__": iface.launch()