|
import torch |
|
import gradio as gr |
|
from transformers import Owlv2Processor, Owlv2ForObjectDetection |
|
import spaces |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
|
|
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device) |
|
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble") |
|
|
|
|
|
default_queries = ( |
|
"pipe defect, rust on pipe, cracked pipe, plastic pipe defect, metal pipe defect, " |
|
"water damage on wall, mold on wall, broken sink, damaged cabinet, faulty door" |
|
) |
|
|
|
@spaces.GPU |
|
def query_image(img, text_queries, score_threshold): |
|
|
|
if not text_queries.strip(): |
|
text_queries = default_queries |
|
|
|
queries = [q.strip() for q in text_queries.split(",") if q.strip()] |
|
|
|
|
|
size = max(img.shape[:2]) |
|
target_sizes = torch.Tensor([[size, size]]) |
|
|
|
|
|
inputs = processor(text=queries, images=img, return_tensors="pt").to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
outputs.logits = outputs.logits.cpu() |
|
outputs.pred_boxes = outputs.pred_boxes.cpu() |
|
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes) |
|
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] |
|
|
|
result_labels = [] |
|
for box, score, label in zip(boxes, scores, labels): |
|
if score < score_threshold: |
|
continue |
|
|
|
if label.item() < len(queries): |
|
result_label = queries[label.item()] |
|
else: |
|
result_label = "unknown" |
|
box = [int(i) for i in box.tolist()] |
|
result_labels.append((box, result_label)) |
|
|
|
return img, result_labels |
|
|
|
description = """ |
|
This demo uses OWLv2 for zero-shot object detection, specifically tailored for home interior and renovation defects. |
|
Enter comma-separated text queries describing issues relevant to home renovations—for example: |
|
"pipe defect, rust on pipe, cracked pipe, plastic pipe defect, metal pipe defect, water damage on wall, mold on wall, broken sink, damaged cabinet, faulty door". |
|
If left blank, a default set of queries will be used. |
|
""" |
|
|
|
demo = gr.Interface( |
|
fn=query_image, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload an Image"), |
|
gr.Textbox(value=default_queries, label="Text Queries"), |
|
gr.Slider(0, 1, value=0.1, label="Score Threshold") |
|
], |
|
outputs=[gr.Image(label="Annotated Image"), "json"], |
|
title="Zero-Shot Home Renovation Defect Detection with OWLv2", |
|
description=description, |
|
examples=[ |
|
|
|
["assets/pipe_sample.jpg", default_queries, 0.11], |
|
["assets/kitchen_renovation.jpg", default_queries, 0.1], |
|
], |
|
) |
|
|
|
demo.launch() |
|
|