File size: 5,438 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
from unittest.mock import MagicMock

import pytest
from _pytest.monkeypatch import MonkeyPatch
from pymochow import MochowClient
from pymochow.model.database import Database
from pymochow.model.enum import IndexState, IndexType, MetricType, ReadConsistency, TableState
from pymochow.model.schema import HNSWParams, VectorIndex
from pymochow.model.table import Table
from requests.adapters import HTTPAdapter


class AttrDict(dict):
    def __getattr__(self, item):
        return self.get(item)


class MockBaiduVectorDBClass:
    def mock_vector_db_client(
        self,
        config=None,
        adapter: HTTPAdapter = None,
    ):
        self.conn = MagicMock()
        self._config = MagicMock()

    def list_databases(self, config=None) -> list[Database]:
        return [
            Database(
                conn=self.conn,
                database_name="dify",
                config=self._config,
            )
        ]

    def create_database(self, database_name: str, config=None) -> Database:
        return Database(conn=self.conn, database_name=database_name, config=config)

    def list_table(self, config=None) -> list[Table]:
        return []

    def drop_table(self, table_name: str, config=None):
        return {"code": 0, "msg": "Success"}

    def create_table(
        self,
        table_name: str,
        replication: int,
        partition: int,
        schema,
        enable_dynamic_field=False,
        description: str = "",
        config=None,
    ) -> Table:
        return Table(self, table_name, replication, partition, schema, enable_dynamic_field, description, config)

    def describe_table(self, table_name: str, config=None) -> Table:
        return Table(
            self,
            table_name,
            3,
            1,
            None,
            enable_dynamic_field=False,
            description="table for dify",
            config=config,
            state=TableState.NORMAL,
        )

    def upsert(self, rows, config=None):
        return {"code": 0, "msg": "operation success", "affectedCount": 1}

    def rebuild_index(self, index_name: str, config=None):
        return {"code": 0, "msg": "Success"}

    def describe_index(self, index_name: str, config=None):
        return VectorIndex(
            index_name=index_name,
            index_type=IndexType.HNSW,
            field="vector",
            metric_type=MetricType.L2,
            params=HNSWParams(m=16, efconstruction=200),
            auto_build=False,
            state=IndexState.NORMAL,
        )

    def query(
        self,
        primary_key,
        partition_key=None,
        projections=None,
        retrieve_vector=False,
        read_consistency=ReadConsistency.EVENTUAL,
        config=None,
    ):
        return AttrDict(
            {
                "row": {
                    "id": primary_key.get("id"),
                    "vector": [0.23432432, 0.8923744, 0.89238432],
                    "text": "text",
                    "metadata": '{"doc_id": "doc_id_001"}',
                },
                "code": 0,
                "msg": "Success",
            }
        )

    def delete(self, primary_key=None, partition_key=None, filter=None, config=None):
        return {"code": 0, "msg": "Success"}

    def search(
        self,
        anns,
        partition_key=None,
        projections=None,
        retrieve_vector=False,
        read_consistency=ReadConsistency.EVENTUAL,
        config=None,
    ):
        return AttrDict(
            {
                "rows": [
                    {
                        "row": {
                            "id": "doc_id_001",
                            "vector": [0.23432432, 0.8923744, 0.89238432],
                            "text": "text",
                            "metadata": '{"doc_id": "doc_id_001"}',
                        },
                        "distance": 0.1,
                        "score": 0.5,
                    }
                ],
                "code": 0,
                "msg": "Success",
            }
        )


MOCK = os.getenv("MOCK_SWITCH", "false").lower() == "true"


@pytest.fixture
def setup_baiduvectordb_mock(request, monkeypatch: MonkeyPatch):
    if MOCK:
        monkeypatch.setattr(MochowClient, "__init__", MockBaiduVectorDBClass.mock_vector_db_client)
        monkeypatch.setattr(MochowClient, "list_databases", MockBaiduVectorDBClass.list_databases)
        monkeypatch.setattr(MochowClient, "create_database", MockBaiduVectorDBClass.create_database)
        monkeypatch.setattr(Database, "table", MockBaiduVectorDBClass.describe_table)
        monkeypatch.setattr(Database, "list_table", MockBaiduVectorDBClass.list_table)
        monkeypatch.setattr(Database, "create_table", MockBaiduVectorDBClass.create_table)
        monkeypatch.setattr(Database, "drop_table", MockBaiduVectorDBClass.drop_table)
        monkeypatch.setattr(Database, "describe_table", MockBaiduVectorDBClass.describe_table)
        monkeypatch.setattr(Table, "rebuild_index", MockBaiduVectorDBClass.rebuild_index)
        monkeypatch.setattr(Table, "describe_index", MockBaiduVectorDBClass.describe_index)
        monkeypatch.setattr(Table, "delete", MockBaiduVectorDBClass.delete)
        monkeypatch.setattr(Table, "query", MockBaiduVectorDBClass.query)
        monkeypatch.setattr(Table, "search", MockBaiduVectorDBClass.search)

    yield

    if MOCK:
        monkeypatch.undo()