Spaces:
Paused
Paused
from abc import abstractmethod | |
from typing import Iterable | |
import numpy as np | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from ...modules.attention import SpatialTransformer | |
from ...modules.diffusionmodules.util import ( | |
avg_pool_nd, | |
conv_nd, | |
linear, | |
normalization, | |
timestep_embedding, | |
zero_module, | |
) | |
from ...util import default, exists | |
class Timestep(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, t): | |
return timestep_embedding(t, self.dim) | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward( | |
self, | |
x, | |
emb, | |
t_context=None, | |
v_context=None | |
): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
elif isinstance(layer, SpatialTransformer): | |
x = layer(x, t_context, v_context) | |
else: | |
x = layer(x) | |
return x | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__( | |
self, channels, use_conv, dims=2, out_channels=None, padding=1, third_up=False | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
self.third_up = third_up | |
if use_conv: | |
self.conv = conv_nd( | |
dims, self.channels, self.out_channels, 3, padding=padding | |
) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
t_factor = 1 if not self.third_up else 2 | |
x = F.interpolate( | |
x, | |
(t_factor * x.shape[2], x.shape[3] * 2, x.shape[4] * 2), | |
mode="nearest", | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__( | |
self, channels, use_conv, dims=2, out_channels=None, padding=1, third_down=False | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2)) | |
if use_conv: | |
# print(f"Building a Downsample layer with {dims} dims.") | |
# print( | |
# f" --> settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, " | |
# f"kernel-size: 3, stride: {stride}, padding: {padding}" | |
# ) | |
if dims == 3: | |
pass | |
# print(f" --> Downsampling third axis (time): {third_down}") | |
self.op = conv_nd( | |
dims, | |
self.channels, | |
self.out_channels, | |
3, | |
stride=stride, | |
padding=padding, | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
up=False, | |
down=False, | |
kernel_size=3, | |
exchange_temb_dims=False, | |
skip_t_emb=False | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.exchange_temb_dims = exchange_temb_dims | |
if isinstance(kernel_size, Iterable): | |
padding = [k // 2 for k in kernel_size] | |
else: | |
padding = kernel_size // 2 | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.skip_t_emb = skip_t_emb | |
self.emb_out_channels = ( | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels | |
) | |
if self.skip_t_emb: | |
print(f"Skipping timestep embedding in {self.__class__.__name__}") | |
assert not self.use_scale_shift_norm | |
self.emb_layers = None | |
self.exchange_temb_dims = False | |
else: | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
self.emb_out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd( | |
dims, | |
self.out_channels, | |
self.out_channels, | |
kernel_size, | |
padding=padding, | |
) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, kernel_size, padding=padding | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
if self.skip_t_emb: | |
emb_out = th.zeros_like(h) | |
else: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
if self.exchange_temb_dims: | |
emb_out = rearrange(emb_out, "b t c ... -> b c t ...") | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
class UnifiedUNetModel(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
ctrl_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
save_attn_type=None, | |
save_attn_layers=[], | |
conv_resample=True, | |
dims=2, | |
use_label=None, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
transformer_depth=1, | |
t_context_dim=None, | |
v_context_dim=None, | |
num_attention_blocks=None, | |
use_linear_in_transformer=False, | |
adm_in_channels=None, | |
transformer_depth_middle=None | |
): | |
super().__init__() | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert ( | |
num_head_channels != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
if num_head_channels == -1: | |
assert ( | |
num_heads != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
self.in_channels = in_channels | |
self.ctrl_channels = ctrl_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
transformer_depth = len(channel_mult) * [transformer_depth] | |
transformer_depth_middle = default(transformer_depth_middle, transformer_depth[-1]) | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_label = use_label | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if self.use_label is not None: | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
linear(adm_in_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
if self.ctrl_channels > 0: | |
self.ctrl_block = TimestepEmbedSequential( | |
conv_nd(dims, ctrl_channels, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 256, 3, padding=1), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_scale_shift_norm=use_scale_shift_norm | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if ( | |
not exists(num_attention_blocks) | |
or nr < num_attention_blocks[level] | |
): | |
layers.append( | |
SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth[level], | |
t_context_dim=t_context_dim, | |
v_context_dim=v_context_dim, | |
use_linear=use_linear_in_transformer | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_scale_shift_norm=use_scale_shift_norm | |
), | |
SpatialTransformer( # always uses a self-attn | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth_middle, | |
t_context_dim=t_context_dim, | |
v_context_dim=v_context_dim, | |
use_linear=use_linear_in_transformer | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_scale_shift_norm=use_scale_shift_norm | |
) | |
) | |
self._feature_size += ch | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(self.num_res_blocks[level] + 1): | |
ich = input_block_chans.pop() | |
layers = [ | |
ResBlock( | |
ch + ich, | |
time_embed_dim, | |
dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_scale_shift_norm=use_scale_shift_norm | |
) | |
] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if ( | |
not exists(num_attention_blocks) | |
or i < num_attention_blocks[level] | |
): | |
layers.append( | |
SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth[level], | |
t_context_dim=t_context_dim, | |
v_context_dim=v_context_dim, | |
use_linear=use_linear_in_transformer | |
) | |
) | |
if level and i == self.num_res_blocks[level]: | |
out_ch = ch | |
layers.append( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)) | |
) | |
# cache attn map | |
self.attn_type = save_attn_type | |
self.attn_layers = save_attn_layers | |
self.attn_map_cache = [] | |
for name, module in self.named_modules(): | |
if any([name.endswith(attn_type) for attn_type in self.attn_type]): | |
item = {"name": name, "heads": module.heads, "size": None, "attn_map": None} | |
self.attn_map_cache.append(item) | |
module.attn_map_cache = item | |
def clear_attn_map(self): | |
for item in self.attn_map_cache: | |
if item["attn_map"] is not None: | |
del item["attn_map"] | |
item["attn_map"] = None | |
def save_attn_map(self, attn_type="t_attn", save_name="temp", tokens=""): | |
attn_maps = [] | |
for item in self.attn_map_cache: | |
name = item["name"] | |
if any([name.startswith(block) for block in self.attn_layers]) and name.endswith(attn_type): | |
heads = item["heads"] | |
attn_maps.append(item["attn_map"].detach().cpu()) | |
attn_map = th.stack(attn_maps, dim=0) | |
attn_map = th.mean(attn_map, dim=0) | |
# attn_map: bh * n * l | |
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length | |
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1) | |
b = attn_map.shape[0] | |
h = w = int(n**0.5) | |
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy() | |
attn_map_i = attn_map[-1] | |
l = attn_map_i.shape[0] | |
fig = plt.figure(figsize=(12, 8), dpi=300) | |
for j in range(12): | |
if j >= l: break | |
ax = fig.add_subplot(3, 4, j+1) | |
sns.heatmap(attn_map_i[j], square=True, xticklabels=False, yticklabels=False) | |
if j < len(tokens): | |
ax.set_title(tokens[j]) | |
fig.savefig(f"temp/attn_map/attn_map_{save_name}.png") | |
plt.close() | |
return attn_map_i | |
def forward(self, x, timesteps=None, t_context=None, v_context=None, y=None, **kwargs): | |
assert (y is not None) == ( | |
self.use_label is not None | |
), "must specify y if and only if the model is class-conditional" | |
self.clear_attn_map() | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
if self.use_label is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
if self.ctrl_channels > 0: | |
in_h, add_h = th.split(h, [self.in_channels, self.ctrl_channels], dim=1) | |
for i, module in enumerate(self.input_blocks): | |
if self.ctrl_channels > 0 and i == 0: | |
h = module(in_h, emb, t_context, v_context) + self.ctrl_block(add_h, emb, t_context, v_context) | |
else: | |
h = module(h, emb, t_context, v_context) | |
hs.append(h) | |
h = self.middle_block(h, emb, t_context, v_context) | |
for i, module in enumerate(self.output_blocks): | |
h = th.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, t_context, v_context) | |
h = h.type(x.dtype) | |
return self.out(h) |