Spaces:
Runtime error
Runtime error
Zack
commited on
Commit
·
747accb
1
Parent(s):
0702187
fix: Possible fix to missing values
Browse files
app.py
CHANGED
@@ -61,7 +61,7 @@ def plot_anomalies(df_test_value, data, anomalies):
|
|
61 |
|
62 |
def clean_data(df):
|
63 |
# Drop rows with any null data
|
64 |
-
df = df.dropna()
|
65 |
|
66 |
# Check if the DataFrame already contains the correct columns
|
67 |
if "timestamp" in df.columns and "value" in df.columns:
|
@@ -83,12 +83,12 @@ def clean_data(df):
|
|
83 |
# Rename column
|
84 |
df.rename(columns={"Hourly_Labor_Hours_Total": "value"}, inplace=True)
|
85 |
|
86 |
-
|
87 |
# Convert "Date_CY" and "Hour" columns into datetime format
|
88 |
df["timestamp"] = pd.to_datetime(df["Date_CY"]) + pd.to_timedelta(df["Hour"].astype(int), unit='h')
|
89 |
|
90 |
# Handle the case where hour is 24
|
91 |
-
df.loc[df["timestamp"].dt.hour == 24, "timestamp"] = df["timestamp"]
|
92 |
df["timestamp"] = df["timestamp"].dt.floor('h')
|
93 |
|
94 |
# Keep only necessary columns
|
@@ -97,6 +97,9 @@ def clean_data(df):
|
|
97 |
# Rename column
|
98 |
df.rename(columns={"Net_Sales_CY": "value"}, inplace=True)
|
99 |
|
|
|
|
|
|
|
100 |
return df
|
101 |
|
102 |
else:
|
|
|
61 |
|
62 |
def clean_data(df):
|
63 |
# Drop rows with any null data
|
64 |
+
# df = df.dropna()
|
65 |
|
66 |
# Check if the DataFrame already contains the correct columns
|
67 |
if "timestamp" in df.columns and "value" in df.columns:
|
|
|
83 |
# Rename column
|
84 |
df.rename(columns={"Hourly_Labor_Hours_Total": "value"}, inplace=True)
|
85 |
|
86 |
+
elif "Date_CY" in df.columns and "Hour" in df.columns and "Net_Sales_CY" in df.columns:
|
87 |
# Convert "Date_CY" and "Hour" columns into datetime format
|
88 |
df["timestamp"] = pd.to_datetime(df["Date_CY"]) + pd.to_timedelta(df["Hour"].astype(int), unit='h')
|
89 |
|
90 |
# Handle the case where hour is 24
|
91 |
+
df.loc[df["timestamp"].dt.hour == 24, "timestamp"] = df["timestamp"] - pd.DateOffset(days=1)
|
92 |
df["timestamp"] = df["timestamp"].dt.floor('h')
|
93 |
|
94 |
# Keep only necessary columns
|
|
|
97 |
# Rename column
|
98 |
df.rename(columns={"Net_Sales_CY": "value"}, inplace=True)
|
99 |
|
100 |
+
# Drop rows where 'value' is NaN
|
101 |
+
df = df.dropna(subset=['value'])
|
102 |
+
|
103 |
return df
|
104 |
|
105 |
else:
|